An Approach of Combining Convolution Neural Network and Graph Convolution Network to Predict the Progression of Myopia

被引:0
|
作者
Lei Li
Haogang Zhu
Longbo Wen
Weizhong Lan
Zhikuan Yang
机构
[1] Beihang University,State Key Laboratory of Software Development Environment
[2] Beihang University,Beijing Advanced Innovation Center for Big Data
[3] Central South University,Based Precision Medicine
[4] Hubei University of Science and Technology,Aier School of Ophthalmology
来源
Neural Processing Letters | 2023年 / 55卷
关键词
Convolution neural network; Graph convolution network; Myopia; Working distance; Light intensity;
D O I
暂无
中图分类号
学科分类号
摘要
To develop an approach of combining convolution neural network and graph convolution network to predict the progression of myopia. The working distance (WD) and light intensity (LI) of three hundred and seventeen children were recorded by Clouclip. The spherical equivalent refraction (SER) of the children were recorded by ophthalmologists. The data of WD and LI were filtered and mapped into a two-dimensional WD-LI space. The percentage of time (PoT) falling into each pixel in the space was calculated for each subject. The space of each subject can be thought of as an image and it is the input of our neural network model that combining several convolution layers and graph convolution layers. The output of the model is the SER. With tenfold cross validation, the validation error is 0.79 D when the L1 loss function is used. This study provides an innovative way to predict the development of myopia by WD and LI. The convolution neural network and graph convolution network are used to predict the myopia with WD and LI simultaneously, which has not been done before.
引用
收藏
页码:247 / 257
页数:10
相关论文
共 50 条
  • [11] The Application of Convolution Neural Network in WheelHub Classification
    Liang, Siqi
    Dang, Hao
    Sun, Muyi
    Han, Kai
    Dai, Aini
    Zhou, Xiaoguang
    2017 INTERNATIONAL CONFERENCE ON ADVANCED MECHATRONIC SYSTEMS (ICAMECHS), 2017, : 57 - 61
  • [12] A Convolution Neural Network Engine for Sclera Recognition
    Maheshan, M. S.
    Harish, B. S.
    Nagadarshan, N.
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2020, 6 (01): : 78 - 83
  • [13] Vehicle recognition using convolution neural network
    Khan, Maleika Heenaye-Mamode
    Khan, Chonnoo Abubakar Siddick
    Oumeir, Rengony Mohammad
    INTERNATIONAL JOURNAL OF BIOMETRICS, 2023, 15 (3-4) : 344 - 358
  • [14] Design Of Convolution Neural Network For Crack Detection
    Malathi, D.
    Gautham, S.
    Dineshkumar, M.
    Balakrishnan, K.
    2024 7TH INTERNATIONAL CONFERENCE ON DEVICES, CIRCUITS AND SYSTEMS, ICDCS 2024, 2024, : 60 - 66
  • [15] Recommendation System Based on Perceptron and Graph Convolution Network
    Lian, Zuozheng
    Yin, Yongchao
    Wang, Haizhen
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 79 (03): : 3939 - 3954
  • [16] A safe semi-supervised graph convolution network
    Yang, Zhi
    Yan, Yadong
    Gan, Haitao
    Zhao, Jing
    Ye, Zhiwei
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (12) : 12677 - 12692
  • [17] An Improved Graph Convolution Network for Robust Image Retrieval
    Xinwei Du
    Lin Wan
    Gang Shen
    Neural Processing Letters, 2023, 55 : 5121 - 5141
  • [18] Enhanced Graph Representation Convolution: Effective Inferring Gene Regulatory Network Using Graph Convolution Network with Self-Attention Graph Pooling Layer
    Alawad, Duaa Mohammad
    Katebi, Ataur
    Hoque, Md Tamjidul
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2024, 6 (03): : 1818 - 1839
  • [19] Graph convolution network for fraud detection in bitcoin transactions
    Asiri, Ahmad
    Somasundaram, K.
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [20] Improving a Syntactic Graph Convolution Network for Sentence Compression
    Wang, Yifan
    Chen, Guang
    CHINESE COMPUTATIONAL LINGUISTICS, CCL 2019, 2019, 11856 : 131 - 142