An Approach of Combining Convolution Neural Network and Graph Convolution Network to Predict the Progression of Myopia

被引:0
|
作者
Lei Li
Haogang Zhu
Longbo Wen
Weizhong Lan
Zhikuan Yang
机构
[1] Beihang University,State Key Laboratory of Software Development Environment
[2] Beihang University,Beijing Advanced Innovation Center for Big Data
[3] Central South University,Based Precision Medicine
[4] Hubei University of Science and Technology,Aier School of Ophthalmology
来源
Neural Processing Letters | 2023年 / 55卷
关键词
Convolution neural network; Graph convolution network; Myopia; Working distance; Light intensity;
D O I
暂无
中图分类号
学科分类号
摘要
To develop an approach of combining convolution neural network and graph convolution network to predict the progression of myopia. The working distance (WD) and light intensity (LI) of three hundred and seventeen children were recorded by Clouclip. The spherical equivalent refraction (SER) of the children were recorded by ophthalmologists. The data of WD and LI were filtered and mapped into a two-dimensional WD-LI space. The percentage of time (PoT) falling into each pixel in the space was calculated for each subject. The space of each subject can be thought of as an image and it is the input of our neural network model that combining several convolution layers and graph convolution layers. The output of the model is the SER. With tenfold cross validation, the validation error is 0.79 D when the L1 loss function is used. This study provides an innovative way to predict the development of myopia by WD and LI. The convolution neural network and graph convolution network are used to predict the myopia with WD and LI simultaneously, which has not been done before.
引用
收藏
页码:247 / 257
页数:10
相关论文
共 50 条
  • [1] An Approach of Combining Convolution Neural Network and Graph Convolution Network to Predict the Progression of Myopia
    Li, Lei
    Zhu, Haogang
    Wen, Longbo
    Lan, Weizhong
    Yang, Zhikuan
    NEURAL PROCESSING LETTERS, 2023, 55 (01) : 247 - 257
  • [2] A graph convolution network based latency prediction algorithm for convolution neural network
    Li Z.
    Zhang R.
    Tan W.
    Ren Y.
    Lei M.
    Wu H.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2022, 48 (12): : 2450 - 2459
  • [3] Combining knowledge extension with convolution neural network for diabetes prediction
    Cheng, Haitao
    Zhu, Jingshu
    Li, Peng
    Xu, He
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 125
  • [4] Optimized Graph Convolution Recurrent Neural Network for Traffic Prediction
    Guo, Kan
    Hu, Yongli
    Qian, Zhen
    Liu, Hao
    Zhang, Ke
    Sun, Yanfeng
    Gao, Junbin
    Yin, Baocai
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (02) : 1138 - 1149
  • [5] VEHICLE CLASSIFICATION USING THE CONVOLUTION NEURAL NETWORK APPROACH
    Trivedi, Janak
    Devi, Mandalapu Sarada
    Dhara, Dave
    SCIENTIFIC JOURNAL OF SILESIAN UNIVERSITY OF TECHNOLOGY-SERIES TRANSPORT, 2021, 112 : 201 - 209
  • [6] A Retinal Verssel Detection Approach Using Convolution Neural Network
    Sengur, Abdulkadir
    Guo, Yanhui
    Budak, Umit
    Vespa, Lucas J.
    2017 INTERNATIONAL ARTIFICIAL INTELLIGENCE AND DATA PROCESSING SYMPOSIUM (IDAP), 2017,
  • [7] Graph Convolution Network for Road Detection with Lidar
    Wang, Xiaohua
    Liao, Zhonghe
    Gao, Zhiyuan
    Li, Li
    Miao, Zhonghua
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 741 - 746
  • [8] Combining pixel selection with covariance similarity approach in hyperspectral face recognition based on convolution neural network
    Rai, Ashok Kumar
    Senthilkumar, Radha
    Kumar, Aswin R.
    MICROPROCESSORS AND MICROSYSTEMS, 2020, 76
  • [9] Combining Vector Space Features and Convolution Neural Network for Text Sentiment Analysis
    Wang Yun
    Wang Xu An
    Zhang Jindan
    Yu, Chenghai
    COMPLEX, INTELLIGENT, AND SOFTWARE INTENSIVE SYSTEMS, 2019, 772 : 780 - 790
  • [10] A Convolution Neural Network based approach to detect the disease in Corn Crop
    Agarwal, Mohit
    Bohat, Vijay Kumar
    Ansari, Mohd. Dilshad
    Sinha, Amit
    Gupta, Suneet Kr.
    Garg, Deepak
    PROCEEDINGS OF THE 2019 IEEE 9TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING (IACC 2019), 2019, : 176 - 181