Nonparametric multiple regression estimation for circular response

被引:0
|
作者
Andrea Meilán-Vila
Mario Francisco-Fernández
Rosa M. Crujeiras
Agnese Panzera
机构
[1] Universidade da Coruña,Research Group MODES, CITIC, Department of Mathematics, Faculty of Computer Science
[2] Universidade de Santiago de Compostela,Department of Statistics, Mathematical Analysis and Optimization, Faculty of Mathematics
[3] Università degli Studi di Firenze,Dipartimento di Statistica, Informatica, Applicazioni “G. Parenti”
来源
TEST | 2021年 / 30卷
关键词
Linear–circular regression; Multiple regression; Local polynomial estimators; 62G05; 62G08; 62G20; 62H11;
D O I
暂无
中图分类号
学科分类号
摘要
Nonparametric estimators of a regression function with circular response and Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^d$$\end{document}-valued predictor are considered in this work. Local polynomial estimators are proposed and studied. Expressions for the asymptotic conditional bias and variance of these estimators are derived, and some guidelines to select asymptotically optimal local bandwidth matrices are also provided. The finite sample behavior of the proposed estimators is assessed through simulations, and their performance is also illustrated with a real data set.
引用
收藏
页码:650 / 672
页数:22
相关论文
共 50 条
  • [1] Nonparametric multiple regression estimation for circular response
    Meilan-Vila, Andrea
    Francisco-Fernandez, Mario
    Crujeiras, Rosa M.
    Panzera, Agnese
    TEST, 2021, 30 (03) : 650 - 672
  • [2] Multivariate-multiple circular regression
    Kim, Sungsu
    SenGupta, Ashis
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2017, 87 (07) : 1277 - 1291
  • [3] Weighted nonparametric regression
    Delicado, P
    delRio, M
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1997, 26 (12) : 2983 - 2998
  • [4] Sample size requirements for multiple regression interval estimation
    Bonett, Douglas G.
    Wright, Thomas A.
    JOURNAL OF ORGANIZATIONAL BEHAVIOR, 2011, 32 (06) : 822 - 830
  • [5] DOA estimation algorithm based on DFT and multiple regression
    Mao, Yuqian
    Zhang, Gong
    IET COMMUNICATIONS, 2020, 14 (22) : 4127 - 4134
  • [6] Benign overfitting and adaptive nonparametric regression
    Chhor, Julien
    Sigalla, Suzanne
    Tsybakov, Alexandre B.
    PROBABILITY THEORY AND RELATED FIELDS, 2024, 189 (3-4) : 949 - 980
  • [7] Lasso Estimation of an Interval-Valued Multiple Regression Model
    Barzana, Marta Garcia
    Colubi, Ana
    Kontoghiorghes, Erricos John
    STRENGTHENING LINKS BETWEEN DATA ANALYSIS AND SOFT COMPUTING, 2015, 315 : 185 - 191
  • [8] Estimation of peak wind response of building using regression analysis
    Payan-Serrano, Omar
    Bojorquez, Eden
    Reyes-Salazar, Alfredo
    Ruiz-Garcia, Jorge
    WIND AND STRUCTURES, 2019, 29 (02) : 129 - 137
  • [9] Comparison of multiple regression to two latent variable techniques for estimation and prediction
    Wall, MM
    Li, RF
    STATISTICS IN MEDICINE, 2003, 22 (23) : 3671 - 3685
  • [10] Multiple regression and genetic programming for coal higher heating value estimation
    Boumanchar, Imane
    Chhiti, Younes
    M'Hamdi Alaoui, Fatima Ezzahrae
    Sahibed-Dine, Abdelaziz
    Bentiss, Fouad
    Jama, Charafeddine
    Bensitel, Mohammed
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2018, 15 (14-15) : 958 - 964