Gradient higher integrability for singular parabolic double-phase systems

被引:0
|
作者
Wontae Kim
Lauri Särkiö
机构
[1] Aalto University,Department of Mathematics
来源
Nonlinear Differential Equations and Applications NoDEA | 2024年 / 31卷
关键词
Parabolic double-phase systems; Parabolic ; -Laplace systems; Gradient estimates; 35D30; 35K55; 35K65;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a local higher integrability result for the gradient of a weak solution to parabolic double-phase systems of p-Laplace type when 2nn+2<p≤2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tfrac{2n}{n+2}< p\le 2$$\end{document}. The result is based on a reverse Hölder inequality in intrinsic cylinders combining p-intrinsic and (p, q)-intrinsic geometries. A singular scaling deficits affects the range of q.
引用
收藏
相关论文
共 16 条
  • [1] Gradient higher integrability for singular parabolic double-phase systems
    Kim, Wontae
    Sarkio, Lauri
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 31 (03):
  • [2] Lipschitz truncation method for parabolic double-phase systems and applications
    Kim, Wontae
    Kinnunen, Juha
    Sarkio, Lauri
    JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 288 (03)
  • [3] Calderón-Zygmund type estimate for the singular parabolic double-phase system
    Kim, Wontae
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 551 (01)
  • [4] Higher integrability for doubly nonlinear parabolic systems
    Boegelein, Verena
    Duzaar, Frank
    Kinnunen, Juha
    Scheven, Christoph
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 143 : 31 - 72
  • [5] Global higher integrability for a doubly nonlinear parabolic system
    Andreas Herán
    Rudolf Rainer
    Nonlinear Differential Equations and Applications NoDEA, 2022, 29
  • [6] Global higher integrability for the parabolic equations in Reifenberg domains
    Yao, Fengping
    MATHEMATISCHE NACHRICHTEN, 2010, 283 (09) : 1358 - 1367
  • [7] Global higher integrability for a doubly nonlinear parabolic system
    Heran, Andreas
    Rainer, Rudolf
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2022, 29 (05):
  • [8] Higher integrability for nonlinear parabolic equations of p-Laplacian type
    Yao, Fengping
    ARCHIV DER MATHEMATIK, 2017, 108 (01) : 85 - 97
  • [9] Higher integrability for a quasilinear parabolic equation of p-Laplacian type
    Yao, Fengping
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (03) : 1265 - 1274
  • [10] Higher integrability for nonlinear parabolic equations of p-Laplacian type
    Fengping Yao
    Archiv der Mathematik, 2017, 108 : 85 - 97