On Minimisers of Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-mean Distortion

被引:0
作者
Tadeusz Iwaniec
Gaven Martin
Jani Onninen
机构
[1] Syracuse University,
[2] University of Helsinki,undefined
[3] Massey University,undefined
[4] Magdelen College,undefined
[5] Oxford University,undefined
[6] University of Jyväskylä,undefined
关键词
Mean distortion minimisers; Harmonic mappings; Calculus of variations; 30C62; 31A05; 49J10;
D O I
10.1007/s40315-014-0063-1
中图分类号
学科分类号
摘要
We study the Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-mean distortion functionals, Ep[f]=∫∫DKp(z,f)dz,f|S=f0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \mathcal{E}_p[f] = \int \int \limits _{\mathbb {D}}{\mathbb {K}}^p(z,f) \; \mathrm{d}z,\quad f_{|{\mathbb {S}}}=f_0 \end{aligned}$$\end{document}for Sobolev self homeomorphisms of the unit disk D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {D}}$$\end{document} with prescribed boundary values f0:S→S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_0:{\mathbb {S}}\rightarrow {\mathbb {S}}$$\end{document} and pointwise distortion function K=K(z,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {K}}={\mathbb {K}}(z,f)$$\end{document}. Here we discuss aspects of the existence, regularity and uniqueness questions for minimisers and discuss the diffeomorphic critical points of Ep\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{E}_p$$\end{document} presenting results we know and making some conjectures. Remarkably, smooth minimisers of the Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-mean distortion functionals have inverses which are harmonic with respect to a metric induced by the distortion of the mapping. From this we are able to deduce that the complex conjugate Beltrami coefficient of a smooth minimiser is locally quasiregular and we identify the quasilinear equation it solves. This has other consequences such as a maximum principle for the distortion.
引用
收藏
页码:399 / 416
页数:17
相关论文
共 42 条
  • [1] Iwaniec T(1993)On mappings with integrable dilatation Proc. Am. Math. Soc. 118 181-188
  • [2] Šverák V(2009)Bilipschitz homeomorphisms of the circle and nonlinear Beltrami equations Quad. Mate. 23 105-117
  • [3] Astala K(2005)Extremal mappings of finite distortion Proc. Lond. Math. Soc. 91 655-702
  • [4] Iwaniec T(2013)Fully non-linear models for the deformation of cellular structures J. Mod. Math. Front. 2 51-64
  • [5] Martin GJ(1956)The boundary correspondence under quasiconformal mappings Acta Math. 96 125-142
  • [6] Astala K(1998)Unique extremality J. Anal. Math. 75 299-338
  • [7] Iwaniec T(2004)Is there always an extremal Teichmüller mapping? J. Anal. Math. 94 363-375
  • [8] Martin GJ(1984)Is there always a unique extremal Teichmüller mapping Proc. Am. Math. Soc. 90 240-242
  • [9] Onninen J(2002)Boundary correspondence under harmonic quasiconformal homeomorphisms of the unit disk Ann. Acad. Sci. Fenn. Math. 27 365-372
  • [10] Hussan J.(1978)On univalent harmonic maps between surfaces Invent. Math. 44 265-278