Optimal Control for a Nonlinear Tuberculosis Model

被引:0
|
作者
P. T. Sowndarrajan
L. Shangerganesh
N. Nyamoradi
S. Hariharan
机构
[1] Vellore Institute of Technology,School of Advanced Sciences
[2] National Institute of Technology Goa,Department of Applied Sciences
[3] Razi University,Department of Mathematics, Faculty of Sciences
来源
Iranian Journal of Science | 2023年 / 47卷
关键词
Nonlocal-diffusion; Schauder’s fixed-point theorem; Optimal control; Adjoint problem; 49J20; 47H10; 76R50;
D O I
暂无
中图分类号
学科分类号
摘要
A system of partial differential equations modeling the transmission dynamics of tuberculosis is considered to represent the density of susceptible, vaccinated, latent stage infected, active stage infected, and treated individuals.We studied the optimal control problem of the coupled nonlinear system with nonlocal diffusion. First, an optimal solution for the proposed model is established and we derive the optimality system. Then, solutions for the direct and the adjoint problem are proved. Numerical simulations are provided to validate the theoretical results.
引用
收藏
页码:1695 / 1706
页数:11
相关论文
共 50 条
  • [41] Optimal control approach in nonlinear mechanics
    Stolz, Claude
    COMPTES RENDUS MECANIQUE, 2008, 336 (1-2): : 238 - 244
  • [42] Optimal Distributed Nonlinear Battery Control
    Akyurek, Alper Sinan
    Rosing, Tajana Simunic
    IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS, 2017, 5 (03) : 1045 - 1054
  • [43] Optimal Control of Nonlinear Multivariable Systems
    Qajar, Ali
    Boozarjomehry, Bozorgmehry Ramin
    IRANIAN JOURNAL OF CHEMISTRY & CHEMICAL ENGINEERING-INTERNATIONAL ENGLISH EDITION, 2009, 28 (02): : 75 - 83
  • [44] Optimal control of nonlinear renewal equation
    Kakumani, Bhargav Kumar
    INTERNATIONAL JOURNAL OF CONTROL, 2021, 94 (03) : 570 - 578
  • [45] Optimal control of nonlinear systems: a predictive control approach
    Chen, WH
    Ballance, DJ
    Gawthrop, PJ
    AUTOMATICA, 2003, 39 (04) : 633 - 641
  • [46] Optimal Control of Nonlinear Resonances for Vehicle Suspension using Linear and Nonlinear Control
    Liu, Can-Chang
    Ren, Chuan-Bo
    Liu, Lu
    Yun, Hai
    JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2013, 32 (04) : 335 - 345
  • [47] THE CONTROL PARAMETERIZATION METHOD FOR NONLINEAR OPTIMAL CONTROL: A SURVEY
    Lin, Qun
    Loxton, Ryan
    Teo, Kok Lay
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2014, 10 (01) : 275 - 309
  • [48] Optimal control using state-dependent Riccati equation of lost of sight in a tuberculosis model
    Emvudu, Yves
    Demasse, Ramses Djidjou
    Djeudeu, Dany
    COMPUTATIONAL & APPLIED MATHEMATICS, 2013, 32 (02) : 191 - 210
  • [49] Optimal control using state-dependent Riccati equation of lost of sight in a tuberculosis model
    Yves Emvudu
    Ramses Djidjou Demasse
    Dany Djeudeu
    Computational and Applied Mathematics, 2013, 32 : 191 - 210
  • [50] Backward bifurcation and optimal control problem for a tuberculosis model incorporating LTBI detectivity and exogenous reinfection
    Huang, Song
    Liu, Zhijun
    Wang, Lianwen
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 225 : 1104 - 1123