Optimal Control for a Nonlinear Tuberculosis Model

被引:0
|
作者
P. T. Sowndarrajan
L. Shangerganesh
N. Nyamoradi
S. Hariharan
机构
[1] Vellore Institute of Technology,School of Advanced Sciences
[2] National Institute of Technology Goa,Department of Applied Sciences
[3] Razi University,Department of Mathematics, Faculty of Sciences
来源
关键词
Nonlocal-diffusion; Schauder’s fixed-point theorem; Optimal control; Adjoint problem; 49J20; 47H10; 76R50;
D O I
暂无
中图分类号
学科分类号
摘要
A system of partial differential equations modeling the transmission dynamics of tuberculosis is considered to represent the density of susceptible, vaccinated, latent stage infected, active stage infected, and treated individuals.We studied the optimal control problem of the coupled nonlinear system with nonlocal diffusion. First, an optimal solution for the proposed model is established and we derive the optimality system. Then, solutions for the direct and the adjoint problem are proved. Numerical simulations are provided to validate the theoretical results.
引用
收藏
页码:1695 / 1706
页数:11
相关论文
共 50 条
  • [31] Existence of Optimal Control for a Nonlinear-Viscous Fluid Model
    Baranovskii, Evgenii S.
    Artemov, Andmikhail A.
    INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 2016
  • [32] Optimal control of a continuous bioreactor using an empirical nonlinear model
    Parker, RS
    Doyle, FJ
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2001, 40 (08) : 1939 - 1951
  • [33] A Nonlinear Optimal Control Approach to Stabilization of a Macroeconomic Development Model
    Rigatos, G.
    Siano, P.
    Ghosh, T.
    Sarno, D.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2017 (ICCMSE-2017), 2017, 1906
  • [34] Optimal control for a nonlinear stochastic PDE model of cancer growth
    Esmaili, Sakine
    Eslahchi, M. R.
    Torres, Delfim F. M.
    OPTIMIZATION, 2024, 73 (09) : 2745 - 2789
  • [35] Optimal control of Solow vintage capital model with nonlinear utility
    Hritonenko, N.
    Yatsenko, Y. U.
    OPTIMIZATION, 2008, 57 (04) : 581 - 592
  • [36] Optimal control for a nonlinear stochastic parabolic model of population competition
    Esmaili, Sakine
    Eslahchi, M. R.
    OPTIMIZATION, 2021, 70 (11) : 2357 - 2386
  • [37] The Model of Nonlinear Filtration Optimal Control for the Problem of Areas Underflooding
    Akimenko, V. V.
    Mitrokhin, S. A.
    JOURNAL OF AUTOMATION AND INFORMATION SCIENCES, 2010, 42 (08) : 65 - 82
  • [38] Optimal Control for a SIR Epidemic Model with Nonlinear Incidence Rate
    Grigorieva, E. V.
    Khailov, E. N.
    Korobeinikov, A.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2016, 11 (04) : 89 - 104
  • [39] Nonlinear Model Predictive Control: an Optimal Search Domain Reduction
    Boggio, Mattia
    Novara, Carlo
    Taragna, Michele
    IFAC PAPERSONLINE, 2023, 56 (02): : 6253 - 6258
  • [40] Optimal control and bifurcation diagram for a model nonlinear fractional SIRC
    Mahdy, A. M. S.
    Higazy, M.
    Gepreel, K. A.
    El-dahdouh, A. A. A.
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (05) : 3481 - 3501