Integral operators of Urysohn-Stieltjes type

被引:0
作者
Banaś J. [1 ]
O'Regan D. [2 ]
机构
[1] Department of Mathematics, Rzeszów University of Technology, 35-959 Rzeszów
[2] Department of Mathematics, National University of Ireland, Galway
关键词
Bounded variation; Compact operator; Integral equation of Urysohn-Stieltjes type; Nondecreasing function; Stieltjes integral;
D O I
10.1007/s10998-005-0025-5
中图分类号
学科分类号
摘要
We investigate some properties of nonlinear integral operators of Urysohn - Stieltjes type with kernels depending on two variables. Results concerning the continuity and compactness of these operators are obtained. The solvability of nonlinear Urysohn - Stieltjes integral equations is also studied. © Akadémiai Kiadó, Budapest.
引用
收藏
页码:1 / 14
页数:13
相关论文
共 18 条
  • [1] Agarwal R.P., O'Regan D., Wong P.J.Y., Positive Solutions of Differential, Difference and Integral Equations, (1999)
  • [2] Burton T.A., Volterra Integral and Differential Equations, (1983)
  • [3] Corduneanu C., Integral Equations and Applications, (1991)
  • [4] Deimling K., Nonlinear Functional Analysis, (1985)
  • [5] Dunford N., Schwartz J., Linear Operators I, (1963)
  • [6] O'Regan D., Meehan M., Existence Theory for Nonlinear Integral and Integrodifferential Equations, (1998)
  • [7] Vath M., Volterra and Integral Equations of Vector Functions, (2000)
  • [8] Zabrejko P.P., Koshelev A.I., Krasnosel'skii M.A., Mikhlin S.G., Rakovschik L.S., Stetsenko V.J., Integral Equations, (1976)
  • [9] Cahlon B., Eskin M., Existence theorems for an integral equation of the Chandrasekhar H-equation with perturbation, J. Math. Anal. Appl., 83, pp. 159-171, (1981)
  • [10] Chandrasekhar S., Radiative Transfer, (1950)