Quasi-normal modes from non-commutative matrix dynamics

被引:0
作者
Francesco Aprile
Francesco Sanfilippo
机构
[1] University of Southampton,STAG Research Centre, Mathematical Sciences, School of Physics and Astronomy
[2] University of Southampton,School of Physics and Astronomy
来源
Journal of High Energy Physics | / 2017卷
关键词
AdS-CFT Correspondence; Matrix Models; Black Holes;
D O I
暂无
中图分类号
学科分类号
摘要
We explore similarities between the process of relaxation in the BMN matrix model and the physics of black holes in AdS/CFT. Focusing on Dyson-fluid solutions of the matrix model, we perform numerical simulations of the real time dynamics of the system. By quenching the equilibrium distribution we study quasi-normal oscillations of scalar single trace observables, we isolate the lowest quasi-normal mode, and we determine its frequencies as function of the energy. Considering the BMN matrix model as a truncation of N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} SYM, we also compute the frequencies of the quasi-normal modes of the dual scalar fields in the AdS5-Schwarzschild background. We compare the results, and we finda surprising similarity.
引用
收藏
相关论文
共 57 条
[1]  
Dyson FJ(1962)A Brownian-motion model for the eigenvalues of a random matrix J. Math. Phys. 3 119-undefined
[2]  
Berenstein DE(2002)Strings in flat space and pp waves from N = 4 super Yang-Mills JHEP 04 013-undefined
[3]  
Maldacena JM(2003)Plane wave matrix theory from N = 4 super Yang-Mills on R×S Nucl. Phys. B 671 359-undefined
[4]  
Nastase HS(2016)Chaos in classical D0-brane mechanics JHEP 02 091-undefined
[5]  
Kim N(2011)Evidence for fast thermalization in the plane-wave matrix model Phys. Rev. Lett. 107 171602-undefined
[6]  
Klose T(1995)Mastering the master field Nucl. Phys. B 451 379-undefined
[7]  
Plefka J(2008)Wilson loop correlators at strong coupling: From matrices to bubbling geometries JHEP 08 068-undefined
[8]  
Gur-Ari G(2013)Rigorous test of non-conformal holography: Wilson loops in N = 2∗ theory JHEP 03 062-undefined
[9]  
Hanada M(2016)Black hole microstates in AdS JHEP 05 054-undefined
[10]  
Shenker SH(2015) from supersymmetric localization JHEP 03 069-undefined