This work discusses the existence of the limit as p goes to 1 of the nontrivial solutions to the one-dimensional problem:
-|ux|p-2uxx=λ|u|p-2u-|u|q-2u0<x<1u(0)=u(1)=0,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} -\left( |u_x|^{p-2} u_x\right) _x = \lambda |{u}|^{{p}-2}{u} -|{u}|^{{q}-2}{u}&{} \quad 0< x < 1\\ u(0)=u(1)=0, &{} \end{array}\right. } \end{aligned}$$\end{document}where λ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\lambda $$\end{document} is a positive parameter and the exponents p, q satisfy 1<p<q\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$1< p < q$$\end{document}. We prove that solutions do converge to a limit function, which solves in a proper sense a Dirichlet problem involving the 1-Laplacian operator.
机构:
North China Elect Power Univ, Dept Math & Phys, Beijing 102206, Peoples R ChinaNorth China Elect Power Univ, Dept Math & Phys, Beijing 102206, Peoples R China
Zhang, Xuemei
Feng, Meiqiang
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R ChinaNorth China Elect Power Univ, Dept Math & Phys, Beijing 102206, Peoples R China
机构:
Duy Tan Univ, Inst Fundamental & Appl Sci, Ho Chi Minh City 700000, VietnamDuy Tan Univ, Inst Fundamental & Appl Sci, Ho Chi Minh City 700000, Vietnam
Ho, Ky
Sim, Inbo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ulsan, Dept Math, Ulsan 44610, South KoreaDuy Tan Univ, Inst Fundamental & Appl Sci, Ho Chi Minh City 700000, Vietnam