This work discusses the existence of the limit as p goes to 1 of the nontrivial solutions to the one-dimensional problem:
-|ux|p-2uxx=λ|u|p-2u-|u|q-2u0<x<1u(0)=u(1)=0,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} -\left( |u_x|^{p-2} u_x\right) _x = \lambda |{u}|^{{p}-2}{u} -|{u}|^{{q}-2}{u}&{} \quad 0< x < 1\\ u(0)=u(1)=0, &{} \end{array}\right. } \end{aligned}$$\end{document}where λ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\lambda $$\end{document} is a positive parameter and the exponents p, q satisfy 1<p<q\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$1< p < q$$\end{document}. We prove that solutions do converge to a limit function, which solves in a proper sense a Dirichlet problem involving the 1-Laplacian operator.
机构:
North China Univ Technol, Coll Sci, Beijing 100144, Peoples R ChinaNorth China Univ Technol, Coll Sci, Beijing 100144, Peoples R China
Sun, Mingzheng
Su, Jiabao
论文数: 0引用数: 0
h-index: 0
机构:
Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R ChinaNorth China Univ Technol, Coll Sci, Beijing 100144, Peoples R China
Su, Jiabao
Zhao, Leiga
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Technol & Business Univ, Sch Math & Stat, Beijing 100048, Peoples R ChinaNorth China Univ Technol, Coll Sci, Beijing 100144, Peoples R China
机构:
Jagiellonian Univ, Fac Math & Comp Sci, Ul Lojasiewicza 6, PL-30348 Krakow, PolandJagiellonian Univ, Fac Math & Comp Sci, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
Gasinski, Leszek
Papageorgiou, Nikolaos S.
论文数: 0引用数: 0
h-index: 0
机构:
Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, GreeceJagiellonian Univ, Fac Math & Comp Sci, Ul Lojasiewicza 6, PL-30348 Krakow, Poland