1D logistic reaction and p-Laplacian diffusion as p goes to one

被引:0
|
作者
José Sabina Lis
Sergio Segura de León
机构
[1] Universidad de La Laguna,Departamento de Análisis Matemático and IUEA
[2] Universitat de València,Departament d’Anàlisi Matemàtica
来源
Ricerche di Matematica | 2022年 / 71卷
关键词
Logistic equation; One-dimensional ; and 1-Laplacian operators; Bifurcation; Asymptotic profiles; 35J70; 34B15; 34C23;
D O I
暂无
中图分类号
学科分类号
摘要
This work discusses the existence of the limit as p goes to 1 of the nontrivial solutions to the one-dimensional problem: -|ux|p-2uxx=λ|u|p-2u-|u|q-2u0<x<1u(0)=u(1)=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} -\left( |u_x|^{p-2} u_x\right) _x = \lambda |{u}|^{{p}-2}{u} -|{u}|^{{q}-2}{u}&{} \quad 0< x < 1\\ u(0)=u(1)=0, &{} \end{array}\right. } \end{aligned}$$\end{document}where λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} is a positive parameter and the exponents p, q satisfy 1<p<q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1< p < q$$\end{document}. We prove that solutions do converge to a limit function, which solves in a proper sense a Dirichlet problem involving the 1-Laplacian operator.
引用
收藏
页码:529 / 547
页数:18
相关论文
共 50 条
  • [1] 1D logistic reaction and p-Laplacian diffusion as p goes to one
    Sabina Lis, Jose
    Segura de Leon, Sergio
    RICERCHE DI MATEMATICA, 2022, 71 (02) : 529 - 547
  • [2] p-Laplacian diffusion coupled to logistic reaction: asymptotic behavior as p goes to 1
    Sabina de Lis, Jose C.
    Segura de Leon, Sergio
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2022, 201 (05) : 2197 - 2240
  • [3] On the logistic equation for the fractional p-Laplacian
    Iannizzotto, Antonio
    Mosconi, Sunra
    Papageorgiou, Nikolaos S. S.
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (04) : 1451 - 1468
  • [4] The convective eigenvalues of the one-dimensional p-Laplacian as p → 1
    de la Calle Ysern, B.
    Sabina de Lis, J. C.
    Segura de Leon, S.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 484 (01)
  • [5] p–Laplacian diffusion coupled to logistic reaction: asymptotic behavior as p goes to 1: To the memory of Professor Ireneo Peral Alonso, a brilliant mathematician, excellent person and dear friend
    Sabina de Lis J.C.
    Segura de León S.
    Annali di Matematica Pura ed Applicata (1923 -), 2022, 201 (5): : 2197 - 2240
  • [6] The one-phase bifurcation for the p-Laplacian
    Ali, Alaa Akram Haj
    Wang, Peiyong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (04) : 1899 - 1921
  • [7] Perturbation of the p-Laplacian by vanishing nonlinearities (in one dimension)
    Benedikt, Jiri
    Girg, Petr
    Takac, Peter
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (08) : 3691 - 3703
  • [8] On positive solutions to equations involving the one-dimensional p-Laplacian
    Ruyun Ma
    Yanqiong Lu
    Ahmed Omer Mohammed Abubaker
    Boundary Value Problems, 2013
  • [9] On the eigencurves of one dimensional p-Laplacian with weights for an elliptic Neumann problem
    Ahmed Sanhaji
    Ahmed Dakkak
    Rendiconti del Circolo Matematico di Palermo Series 2, 2020, 69 : 353 - 367
  • [10] On the eigencurves of one dimensional p-Laplacian with weights for an elliptic Neumann problem
    Sanhaji, Ahmed
    Dakkak, Ahmed
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2020, 69 (02) : 353 - 367