Superconvergence of a finite element method for the time-fractional diffusion equation with a time-space dependent diffusivity

被引:0
|
作者
Na An
机构
[1] Shandong Normal University,School of Mathematics and Statistics
关键词
Time-fractional diffusion; Caputo derivative; Finite element method; Superconvergence;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, a time-fractional diffusion problem with a time-space dependent diffusivity is considered. The solution of such a problem has a weak singularity at the initial time t=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t=0$\end{document}. Based on the L1 scheme in time on a graded mesh and the conforming finite element method in space on a uniform mesh, the fully discrete L1 conforming finite element method (L1 FEM) of a time-fractional diffusion problem is investigated. The error analysis is based on a nonstandard discrete Gronwall inequality. The final superconvergence result shows that an optimal grading of the temporal mesh should be selected as r≥(2−α)/α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r\geq (2-\alpha )/\alpha $\end{document}. Numerical results confirm that our analysis is sharp.
引用
收藏
相关论文
共 50 条
  • [41] Superconvergence analysis of anisotropic finite element method for the time fractional substantial diffusion equation with smooth and nonsmooth solutions
    Wang, Zhongchi
    Li, Meng
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (05) : 5545 - 5560
  • [42] Maximum principles for a time-space fractional diffusion equation
    Jia, Junxiong
    Li, Kexue
    APPLIED MATHEMATICS LETTERS, 2016, 62 : 23 - 28
  • [43] Landweber iterative method for identifying a space-dependent source for the time-fractional diffusion equation
    Yang, Fan
    Ren, Yu-Peng
    Li, Xiao-Xiao
    Li, Dun-Gang
    BOUNDARY VALUE PROBLEMS, 2017,
  • [44] Landweber iterative method for identifying a space-dependent source for the time-fractional diffusion equation
    Fan Yang
    Yu-Peng Ren
    Xiao-Xiao Li
    Dun-Gang Li
    Boundary Value Problems, 2017
  • [45] Boundary stabilization for time-space fractional diffusion equation
    Huang, Jianping
    Zhou, Hua-Cheng
    EUROPEAN JOURNAL OF CONTROL, 2022, 65
  • [46] Time-Space Adaptive Finite Element Method for Nonlinear Schrodinger Equation
    Chen, Yaoyao
    Liu, Ying
    Wang, Hao
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2024,
  • [47] A Finite Element Method for the Multiterm Time-Space Riesz Fractional Advection-Diffusion Equations in Finite Domain
    Zhao, Jingjun
    Xiao, Jingyu
    Xu, Yang
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [48] The time-space fractional diffusion equation with an absorption term
    Han, Baoyan
    PROCEEDINGS OF THE 2012 24TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2012, : 1054 - 1056
  • [49] A fast algorithm for time-fractional diffusion equation with space-time-dependent variable order
    Jia, Jinhong
    Wang, Hong
    Zheng, Xiangcheng
    NUMERICAL ALGORITHMS, 2023, 94 (04) : 1705 - 1730
  • [50] A fast algorithm for time-fractional diffusion equation with space-time-dependent variable order
    Jinhong Jia
    Hong Wang
    Xiangcheng Zheng
    Numerical Algorithms, 2023, 94 : 1705 - 1730