Superconvergence of a finite element method for the time-fractional diffusion equation with a time-space dependent diffusivity

被引:0
|
作者
Na An
机构
[1] Shandong Normal University,School of Mathematics and Statistics
来源
Advances in Difference Equations | / 2020卷
关键词
Time-fractional diffusion; Caputo derivative; Finite element method; Superconvergence;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, a time-fractional diffusion problem with a time-space dependent diffusivity is considered. The solution of such a problem has a weak singularity at the initial time t=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t=0$\end{document}. Based on the L1 scheme in time on a graded mesh and the conforming finite element method in space on a uniform mesh, the fully discrete L1 conforming finite element method (L1 FEM) of a time-fractional diffusion problem is investigated. The error analysis is based on a nonstandard discrete Gronwall inequality. The final superconvergence result shows that an optimal grading of the temporal mesh should be selected as r≥(2−α)/α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r\geq (2-\alpha )/\alpha $\end{document}. Numerical results confirm that our analysis is sharp.
引用
收藏
相关论文
共 50 条
  • [41] Efficient Galerkin finite element methods for a time-fractional Cattaneo equation
    Chen, An
    Nong, Lijuan
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [42] A Dimensional-Splitting Weak Galerkin Finite Element Method for 2D Time-Fractional Diffusion Equation
    Seal, Aniruddha
    Natesan, Srinivasan
    Toprakseven, Suayip
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 98 (03)
  • [43] An efficient computational approach for the solution of time-space fractional diffusion equation
    Santra, Sudarshan
    Mohapatra, Jugal
    INTERNATIONAL JOURNAL OF MODELLING AND SIMULATION, 2023, 43 (04) : 393 - 405
  • [44] Efficient Galerkin finite element methods for a time-fractional Cattaneo equation
    An Chen
    Lijuan Nong
    Advances in Difference Equations, 2020
  • [45] Lattice Boltzmann method for tempered time-fractional diffusion equation
    Ren, Junjie
    Song, Jie
    Lei, Hao
    PHYSICA SCRIPTA, 2024, 99 (11)
  • [46] Trapezoidal scheme for time-space fractional diffusion equation with Riesz derivative
    Arshad, Sadia
    Huang, Jianfei
    Khaliq, Abdul Q. M.
    Tang, Yifa
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 350 : 1 - 15
  • [47] On a time-space fractional diffusion equation with a semilinear source of exponential type
    Nguyen, Anh Tuan
    Yang, Chao
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (04): : 1354 - 1373
  • [48] FINITE ELEMENT METHOD FOR THE SPACE AND TIME FRACTIONAL FOKKER-PLANCK EQUATION
    Deng, Weihua
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 47 (01) : 204 - 226
  • [49] A finite element approximation for a class of Caputo time-fractional diffusion equations
    Ammi, Moulay Rchid Sidi
    Jamiai, Ismail
    Torres, Delfim F. M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (05) : 1334 - 1344
  • [50] Nonconforming Mixed FEM Analysis for Multi-Term Time-Fractional Mixed Sub-Diffusion and Diffusion-Wave Equation with Time-Space Coupled Derivative
    Cao, Fangfang
    Zhao, Yanmin
    Wang, Fenling
    Shi, Yanhua
    Yao, Changhui
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2023, 15 (02) : 322 - 358