Superconvergence of a finite element method for the time-fractional diffusion equation with a time-space dependent diffusivity

被引:0
|
作者
Na An
机构
[1] Shandong Normal University,School of Mathematics and Statistics
关键词
Time-fractional diffusion; Caputo derivative; Finite element method; Superconvergence;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, a time-fractional diffusion problem with a time-space dependent diffusivity is considered. The solution of such a problem has a weak singularity at the initial time t=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t=0$\end{document}. Based on the L1 scheme in time on a graded mesh and the conforming finite element method in space on a uniform mesh, the fully discrete L1 conforming finite element method (L1 FEM) of a time-fractional diffusion problem is investigated. The error analysis is based on a nonstandard discrete Gronwall inequality. The final superconvergence result shows that an optimal grading of the temporal mesh should be selected as r≥(2−α)/α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r\geq (2-\alpha )/\alpha $\end{document}. Numerical results confirm that our analysis is sharp.
引用
收藏
相关论文
共 50 条
  • [31] General Pade approximation method for time-space fractional diffusion equation
    Ding, Hengfei
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 299 : 221 - 228
  • [32] A Galerkin finite element method for time-fractional stochastic heat equation
    Zou, Guang-an
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (11) : 4135 - 4150
  • [33] Galerkin finite element method for time-fractional stochastic diffusion equations
    Zou, Guang-an
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (04): : 4877 - 4898
  • [34] A Cα finite difference method for the Caputo time-fractional diffusion equation
    Davis, Wesley
    Noren, Richard
    Shi, Ke
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (03) : 2261 - 2277
  • [35] Galerkin finite element method for time-fractional stochastic diffusion equations
    Guang-an Zou
    Computational and Applied Mathematics, 2018, 37 : 4877 - 4898
  • [36] An α-robust analysis of finite element method for space-time fractional diffusion equation
    Yang, Yi
    Huang, Jin
    Li, Hu
    NUMERICAL ALGORITHMS, 2025, 98 (01) : 165 - 190
  • [37] The time discontinuous space-time finite element method for fractional diffusion-wave equation
    Zheng, Yunying
    Zhao, Zhengang
    APPLIED NUMERICAL MATHEMATICS, 2020, 150 (150) : 105 - 116
  • [38] Superconvergence analysis of nonconforming finite element method for two-dimensional time-fractional Allen-Cahn equation
    Wei, Yabing
    Zhao, Yanmin
    Wang, Fenling
    Tang, Yifa
    APPLIED MATHEMATICS LETTERS, 2023, 140
  • [39] Superconvergence analysis of finite element method for the time-dependent Schrodinger equation
    Wang, Jianyun
    Huang, Yunqing
    Tian, Zhikun
    Zhou, Jie
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (10) : 1960 - 1972
  • [40] BACKWARD PROBLEM FOR A TIME-SPACE FRACTIONAL DIFFUSION EQUATION
    Jia, Junxiong
    Peng, Jigen
    Gao, Jinghuai
    Li, Yujiao
    INVERSE PROBLEMS AND IMAGING, 2018, 12 (03) : 773 - 799