Superconvergence of a finite element method for the time-fractional diffusion equation with a time-space dependent diffusivity

被引:0
|
作者
Na An
机构
[1] Shandong Normal University,School of Mathematics and Statistics
来源
Advances in Difference Equations | / 2020卷
关键词
Time-fractional diffusion; Caputo derivative; Finite element method; Superconvergence;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, a time-fractional diffusion problem with a time-space dependent diffusivity is considered. The solution of such a problem has a weak singularity at the initial time t=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t=0$\end{document}. Based on the L1 scheme in time on a graded mesh and the conforming finite element method in space on a uniform mesh, the fully discrete L1 conforming finite element method (L1 FEM) of a time-fractional diffusion problem is investigated. The error analysis is based on a nonstandard discrete Gronwall inequality. The final superconvergence result shows that an optimal grading of the temporal mesh should be selected as r≥(2−α)/α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r\geq (2-\alpha )/\alpha $\end{document}. Numerical results confirm that our analysis is sharp.
引用
收藏
相关论文
共 50 条
  • [31] A Numerical Method for the Solution of the Time-Fractional Diffusion Equation
    Ferras, Luis L.
    Ford, Neville J.
    Morgado, Maria L.
    Rebelo, Magda
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2014, PT 1, 2014, 8579 : 117 - 131
  • [32] Unstructured mesh finite difference/finite element method for the 2D time-space Riesz fractional diffusion equation on irregular convex domains
    Feng, Libo
    Liu, Fawang
    Turner, Ian
    Yang, Qianqian
    Zhuang, Pinghui
    APPLIED MATHEMATICAL MODELLING, 2018, 59 : 441 - 463
  • [33] RECOVERING A SPACE-DEPENDENT SOURCE TERM IN A TIME-FRACTIONAL DIFFUSION WAVE EQUATION
    Wei, Ting
    Yan, Xiongbin
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2019, 9 (05): : 1801 - 1821
  • [34] Optimal spatial H1-norm analysis of a finite element method for a time-fractional diffusion equation
    Huang, Chaobao
    Stynes, Martin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 367
  • [35] Finite element method for Grwunwald-Letnikov time-fractional partial differential equation
    Zhang, Xindong
    Liu, Juan
    Wei, Leilei
    Ma, Changxiu
    APPLICABLE ANALYSIS, 2013, 92 (10) : 2103 - 2114
  • [36] Numerical solution of nonlinear time-fractional Cable equation by finite volume element method
    Yazdani, A.
    Yousefian, R.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, (47): : 55 - 69
  • [37] A new Crank-Nicolson finite element method for the time-fractional subdiffusion equation
    Zeng, Fanhai
    Li, Changpin
    APPLIED NUMERICAL MATHEMATICS, 2017, 121 : 82 - 95
  • [38] A semi-discrete finite element method for a class of time-fractional diffusion equations
    Sun, HongGuang
    Chen, Wen
    Sze, K. Y.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 371 (1990):
  • [39] A characteristic finite element method for the time-fractional mobile/immobile advection diffusion model
    Huan Liu
    Xiangcheng Zheng
    Chuanjun Chen
    Hong Wang
    Advances in Computational Mathematics, 2021, 47
  • [40] A characteristic finite element method for the time-fractional mobile/immobile advection diffusion model
    Liu, Huan
    Zheng, Xiangcheng
    Chen, Chuanjun
    Wang, Hong
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2021, 47 (03)