Maximal atom–photon entanglement in a double-Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document} quantum system

被引:0
作者
Zeinab Kordi
Saeed Ghanbari
Mohammad Mahmoudi
机构
[1] University of Zanjan,Department of Physics
关键词
Entanglement; Quantum entropy; Quantum control ; Double-; system;
D O I
10.1007/s11128-015-0969-1
中图分类号
学科分类号
摘要
The atom–photon entanglement of a dressed atom and its spontaneous emission in a double-Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document} closed-loop atomic system is studied under multi-photon resonance condition. It is shown that even in the absence of quantum interference due to the spontaneous emission, the von Neumann entropy is phase-sensitive and it can be controlled by either intensity or relative phase of the applied fields. It is demonstrated that for the special case of Rabi frequency of the applied fields, the system is maximally entangled. Moreover, an open-loop configuration is considered, and it is shown that the degree of entanglement can be controlled by intensity of the applied fields. Furthermore, in electromagnetically induced transparency condition, the system is disentangled. Such a system can be used for quantum information processing via entanglement using optical switching.
引用
收藏
页码:1907 / 1918
页数:11
相关论文
共 141 条
[1]  
Einstein A(1935)Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47 777-812
[2]  
Podolsky B(1935)Die gegenwärtige Situation in der Quantenmechanik Die Naturwissenschaften 23 807-3851
[3]  
Rosen N(1996)Mixed-state entanglement and quantum error correction Phys. Rev. A 54 3824-4290
[4]  
Schrodinger E(1993)Event-ready-detectors Bell experiment via entanglement swapping Phys. Rev. Lett. 71 4287-2884
[5]  
Bennett CH(1992)Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states Phys. Rev. Lett. 69 2881-201
[6]  
DiVincenzo DP(1996)Perfect quantum error correction code Phys. Rev. Lett. 77 198-71
[7]  
Smolin JA(1997)Quantum error correction in the presence of spontaneous emission Phys. Rev. A 55 67-663
[8]  
Wootters WK(1991)Quantum cryptography based on Bell’s theorem Phys. Rev. Lett. 67 661-486
[9]  
Zukowski M(2004)Distribution of time-bin entangled qubits over 50 km of optical fiber Phys. Rev. Lett. 93 180502-577
[10]  
Zeilinger A(2007)Entanglement-based quantum communication over 144 km Nat. Phys. 3 481-53