Toeplitz Operators with Quasi-Homogeneuos Quasi-Radial Symbols on Some Weakly Pseudoconvex Domains

被引:0
作者
Raul Quiroga-Barranco
Armando Sanchez-Nungaray
机构
[1] Centro de Investigación en Matemáticas,Facultad de Matemáticas
[2] Universidad Veracruzana,undefined
来源
Complex Analysis and Operator Theory | 2015年 / 9卷
关键词
Toeplitz operator; Bergman space; Commutative Banach algebra; Lagrangian manifolds; Primary 47B35; Secondary 32A36; 32M15; 53C12;
D O I
暂无
中图分类号
学科分类号
摘要
On the weakly pseudo-convex domains Ωpn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _p^n$$\end{document} we introduce quasi-homogeneous quasi-radial symbols. These are used to prove the existence of a commutative Banach algebra of Toeplitz operators on Bergman space of Ωpn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _p^n$$\end{document}. We also show that group theoretic and geometric properties for our symbols are satisfied. The results presented here contain the geometric description of the symbols introduced by  Vasilevski in (Integr Equ Operat Theory, 66(1):141–152, 2010) for the unit ball Bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {B}^n$$\end{document}.
引用
收藏
页码:1111 / 1134
页数:23
相关论文
共 14 条
[1]  
Crocker D(1981)Toeplitz operator on certain weakly pseudoconvex domains J. Aust. Math. Soc. Ser. A 31 1-14
[2]  
Raeburn I(2006)Commutative J. Funct. Anal. 234 1-44
[3]  
Grudsky S(2011)-algebras of Toeplitz operators and quantization on the unit disk Integr. Equ. Oper. Theory 71 225-243
[4]  
Quiroga-Barranco R(2007)Commutative Integr. Equ. Operat. Theory 59 67-98
[5]  
Vasilevski N(2007)-algebras of Toeplitz operators on the complex projective space Integr. Equ. Operat. Theory 59 379-419
[6]  
Quiroga-Barranco R(2008)Commutative algebras of Toeplitz operators on the Reinhardt domains Integr. Equ. Operat. Theory 60 89-132
[7]  
Sanchez-Nungaray A(2010)Commutative Integr. Equ. Operat. Theory 66 141-152
[8]  
Quiroga-Barranco R(undefined)-algebras of Toeplitz operators on the unit ball. I. Bargmann-type transforms and spectral representations of toeplitz operators undefined undefined undefined-undefined
[9]  
Vasilevski N(undefined)Commutative undefined undefined undefined-undefined
[10]  
Quiroga-Barranco R(undefined)-algebras of Toeplitz operators on the unit ball. II. Geometry of the level sets of symbols undefined undefined undefined-undefined