On Local Metric Characteristics of Level Sets of CH1-Mappings of Carnot Manifolds

被引:0
作者
M. B. Karmanova
机构
[1] Sobolev Institute of Mathematics,
来源
Siberian Mathematical Journal | 2019年 / 60卷
关键词
Carnot—Carathéodory space; Carnot group; Lipschitz mapping; induced measure; adapted basis; area formula;
D O I
暂无
中图分类号
学科分类号
摘要
Considering the level surfaces of the mappings of class CH1 which are defined on Carnot manifolds and take values in Carnot—Carathéodory spaces, we introduce some adequate local metric characteristic that bases on a correspondence with a neighborhood of the kernel of the sub-Riemannian differential. Moreover, for the mappings on Carnot groups we construct an adapted basis in the preimage which matches local sub-Riemannian structures on the complement of the kernel of the sub-Riemannian differential (including those meeting the level set) and on the arrival set.
引用
收藏
页码:1007 / 1021
页数:14
相关论文
共 25 条
  • [1] Korányi A(1985)Quasiconformal mappings on the Heisenberg group Invent. Math. 80 309-338
  • [2] Reimann H M(1995)Foundations for the theory of quasiconformal mappings on the Heisenberg group Adv. Math. 111 1-87
  • [3] Korányi A(2003)Contact and quasiconformal mappings on real model filiform groups Bull. Austral. Math. Soc. 68 329-343
  • [4] Reimann H M(2005)Jet spaces as nonrigid Carnot groups J. Lie Theory 15 341-356
  • [5] Warhurst B(2014)An area formula for Lipschitz mappings of Carnot—Carathéodory spaces Izv. Math. 78 475-499
  • [6] Warhurst B(2018)Graphs of Lipschitz mappings on two-step sub-Lorentzian structures with multidimensional time Dokl. Math. 98 360-363
  • [7] Karmanova M B(2001)Rectifiability and perimeter in the Heisenberg group Math. Ann. 321 479-531
  • [8] Karmanova M B(2013)One-dimensional level surfaces of Vestn. NGU 13 16-36
  • [9] Franchi B(2016)-differentiable mappings on Carnot—Caratheodory spaces J. Geom. Anal. 26 1946-1994
  • [10] Serapioni R(2013)Intrinsic Lipschitz graphs within Carnot groups Acta Appl. Math. 128 67-111