Extending the Balas-Yu bounds on the number of maximal independent sets in graphs to hypergraphs and lattices

被引:0
|
作者
Endre Boros
Khaled Elbassioni
Vladimir Gurvich
Leonid Khachiyan
机构
[1] Rutgers University,RUTCOR
[2] Rutgers University,Department of Computer Science
来源
Mathematical Programming | 2003年 / 98卷
关键词
dualization; hypergraph; incremental algorithm; maximal independent set; lattice; polymatroid function; system of polymatroid inequalities; proper mapping;
D O I
暂无
中图分类号
学科分类号
摘要
A result of Balas and Yu (1989) states that the number of maximal independent sets of a graph G is at most δp+1, where δ is the number of pairs of vertices in G at distance 2, and p is the cardinality of a maximum induced matching in G. In this paper, we give an analogue of this result for hypergraphs and, more generally, for subsets of vectors ℬ in the product of n lattices ℒ=ℒ1×⋯×ℒn, where the notion of an induced matching in G is replaced by a certain binary tree each internal node of which is mapped into ℬ. We show that our bounds may be nearly sharp for arbitrarily large hypergraphs and lattices. As an application, we prove that the number of maximal infeasible vectors xℒ=ℒ1×⋯×ℒn for a system of polymatroid inequalities \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${{f_1(x) \ge t_1,\ldots,f_r(x) \ge t_r}}$\end{document} does not exceed max{Q,βlogt/c(2Q,β)}, where β is the number of minimal feasible vectors for the system, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${{Q=|{{\mathcal L}}_1|+\ldots+|{{\mathcal L}}_n|}}$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${{t=\hbox{max}\{t_1,\ldots,t_r\}}}$\end{document}, and c(ρ,β) is the unique positive root of the equation 2c(ρc/logβ−1)=1. This bound is nearly sharp for the Boolean case ℒ={0,1}n, and it allows for the efficient generation of all minimal feasible sets to a given system of polymatroid inequalities with quasi-polynomially bounded right-hand sides \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${{t_1, \ldots, t_r}}$\end{document}.
引用
收藏
页码:355 / 368
页数:13
相关论文
共 27 条
  • [1] Extending the Balas-Yu bounds on the number of maximal independent sets in graphs to hypergraphs and lattices
    Boros, E
    Elbassioni, K
    Gurvich, V
    Khachiyan, L
    MATHEMATICAL PROGRAMMING, 2003, 98 (1-3) : 355 - 368
  • [2] DISJOINT MAXIMAL INDEPENDENT SETS IN GRAPHS AND HYPERGRAPHS
    Dorbec, Paul
    Kaci, Fatma
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024, 44 (04) : 1361 - 1371
  • [3] On graphs with the third largest number of maximal independent sets
    Hua, Hongbo
    Hou, Yaloping
    INFORMATION PROCESSING LETTERS, 2009, 109 (04) : 248 - 253
  • [4] On the Third Largest Number of Maximal Independent Sets of Graphs
    Li, Shuchao
    Zhang, Huihui
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2016, 39 : S269 - S282
  • [5] On the Third Largest Number of Maximal Independent Sets of Graphs
    Shuchao Li
    Huihui Zhang
    Bulletin of the Malaysian Mathematical Sciences Society, 2016, 39 : 269 - 282
  • [6] On the number of maximal independent sets in minimum colorings of split graphs
    Bresar, Bostjan
    Movarraei, Nazanin
    DISCRETE APPLIED MATHEMATICS, 2018, 247 : 352 - 356
  • [7] On the Number of Independent Sets in Simple Hypergraphs
    Balobanov, A. E.
    Shabanov, D. A.
    MATHEMATICAL NOTES, 2018, 103 (1-2) : 33 - 41
  • [8] On the Number of Independent Sets in Simple Hypergraphs
    A. E. Balobanov
    D. A. Shabanov
    Mathematical Notes, 2018, 103 : 33 - 41
  • [9] The number of maximal independent sets in connected triangle-free graphs
    Chang, GJ
    Jou, MJ
    DISCRETE MATHEMATICS, 1999, 197 (1-3) : 169 - 178
  • [10] Lower Bounds for Maximal Matchings and Maximal Independent Sets
    Balliu, Alkida
    Brandt, Sebastian
    Hirvonen, Juho
    Olivetti, Dennis
    Rabie, Mikael
    Suomela, Jukka
    2019 IEEE 60TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2019), 2019, : 481 - 497