Energy Equality and Uniqueness of Weak Solutions of a “Viscous Incompressible Fluid + Rigid Body” System with Navier Slip-with-Friction Conditions in a 2D Bounded Domain

被引:0
作者
Marco Bravin
机构
[1] Université de Bordeaux,Institut de Mathématiques de Bordeaux UMR CNRS 5251
来源
Journal of Mathematical Fluid Mechanics | 2019年 / 21卷
关键词
Navier–Stokes equations; Fluid–structure interaction; Uniqueness; Navier-type boundary conditions; Primary 35Q35; Secondary 76B03; 76N17;
D O I
暂无
中图分类号
学科分类号
摘要
The existence of weak solutions to the “viscous incompressible fluid + rigid body” system with Navier slip-with-friction conditions in a 3D bounded domain has been recently proved by Gérard-Varet and Hillairet (Commun Pure Appl Math 67(12):2022–2076, 2014). In 2D for a fluid alone (without any rigid body) it is well-known since Leray that weak solutions are unique, continuous in time with L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ L^{2} $$\end{document} regularity in space and satisfy the energy equality. In this paper we prove that these properties also hold for the 2D “viscous incompressible fluid + rigid body” system with Navier slip-with-friction conditions.
引用
收藏
相关论文
共 38 条
  • [31] Sueur F(undefined)undefined undefined undefined undefined-undefined
  • [32] San Martin JA(undefined)undefined undefined undefined undefined-undefined
  • [33] Starovoitov V(undefined)undefined undefined undefined undefined-undefined
  • [34] Tucsnak M(undefined)undefined undefined undefined undefined-undefined
  • [35] Shimada R(undefined)undefined undefined undefined undefined-undefined
  • [36] Takahashi T(undefined)undefined undefined undefined undefined-undefined
  • [37] Wang C(undefined)undefined undefined undefined undefined-undefined
  • [38] Weis L(undefined)undefined undefined undefined undefined-undefined