Energy Equality and Uniqueness of Weak Solutions of a “Viscous Incompressible Fluid + Rigid Body” System with Navier Slip-with-Friction Conditions in a 2D Bounded Domain

被引:0
作者
Marco Bravin
机构
[1] Université de Bordeaux,Institut de Mathématiques de Bordeaux UMR CNRS 5251
来源
Journal of Mathematical Fluid Mechanics | 2019年 / 21卷
关键词
Navier–Stokes equations; Fluid–structure interaction; Uniqueness; Navier-type boundary conditions; Primary 35Q35; Secondary 76B03; 76N17;
D O I
暂无
中图分类号
学科分类号
摘要
The existence of weak solutions to the “viscous incompressible fluid + rigid body” system with Navier slip-with-friction conditions in a 3D bounded domain has been recently proved by Gérard-Varet and Hillairet (Commun Pure Appl Math 67(12):2022–2076, 2014). In 2D for a fluid alone (without any rigid body) it is well-known since Leray that weak solutions are unique, continuous in time with L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ L^{2} $$\end{document} regularity in space and satisfy the energy equality. In this paper we prove that these properties also hold for the 2D “viscous incompressible fluid + rigid body” system with Navier slip-with-friction conditions.
引用
收藏
相关论文
共 38 条
  • [1] Bucur D(2008)On the asymptotic limit of the Navier–Stokes system on domains with rough boundaries J. Differ. Equ. 244 2890-2908
  • [2] Feireisl E(2017)The motion of the rigid body in the viscous fluid including collisions. Global solvability result Nonlinear Anal. Real World Appl. 34 416-445
  • [3] Nečasová Š(2008)Well-posedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid Czechoslov. Math. J. 58 961-992
  • [4] Wolf J(2003)ℛ-boundedness, Fourier multipliers and problems of elliptic and parabolic type Memoirs of the American Mathematical Society 166 0-0
  • [5] Chemetov NV(2013)-theory for strong solutions to fluid–rigid body interaction in Newtonian and generalized Newtonian fluids Trans. Am. Math. Soc. 365 1393-1439
  • [6] Nečasová Š(2014)Existence of weak solutions up to collision for viscous fluid–solid systems with slip Commun. Pure Appl. Math. 67 2022-2076
  • [7] Cumsille P(2015)The influence of boundary conditions on the contact problem in a 3D Navier–Stokes flow J. Math. Pures Appl. 103 1-38
  • [8] Takahashi T(2015)Uniqueness results for weak solutions of two-dimensional fluid–solid systems Arch. Ration. Mech. Anal. 218 907-944
  • [9] Denk Robert(2000)Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions J. Math. Fluid Mech. 2 219-266
  • [10] Hieber Matthias(2007)Lack of collision between solid bodies in a 2D incompressible viscous flow Commun. Partial Differ. Equ. 32 1345-1371