Genome sequence of the date palm Phoenix dactylifera L

被引:0
作者
Ibrahim S. Al-Mssallem
Songnian Hu
Xiaowei Zhang
Qiang Lin
Wanfei Liu
Jun Tan
Xiaoguang Yu
Jiucheng Liu
Linlin Pan
Tongwu Zhang
Yuxin Yin
Chengqi Xin
Hao Wu
Guangyu Zhang
Mohammed M. Ba Abdullah
Dawei Huang
Yongjun Fang
Yasser O. Alnakhli
Shangang Jia
An Yin
Eman M. Alhuzimi
Burair A. Alsaihati
Saad A. Al-Owayyed
Duojun Zhao
Sun Zhang
Noha A. Al-Otaibi
Gaoyuan Sun
Majed A. Majrashi
Fusen Li
Jixiang Tala
Quanzheng Wang
Nafla A. Yun
Lei Alnassar
Meng Wang
Rasha F. Yang
Kan Al-Jelaify
Shenghan Liu
Kaifu Gao
Samiyah R. Chen
Guiming Alkhaldi
Meng Liu
Haiyan Zhang
Jun Guo
机构
[1] Joint Center for Genomics Research,Department of Biotechnology
[2] King Abdulaziz City for Science and Technology and Chinese Academy of Sciences,undefined
[3] College of Agriculture and Food Sciences,undefined
[4] King Faisal University,undefined
[5] CAS Key Laboratory of Genome Sciences and Information,undefined
[6] Beijing Institute of Genomics,undefined
[7] Chinese Academy of Sciences,undefined
来源
Nature Communications | / 4卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Date palm (Phoenix dactylifera L.) is a cultivated woody plant species with agricultural and economic importance. Here we report a genome assembly for an elite variety (Khalas), which is 605.4 Mb in size and covers >90% of the genome (~671 Mb) and >96% of its genes (~41,660 genes). Genomic sequence analysis demonstrates that P. dactylifera experienced a clear genome-wide duplication after either ancient whole genome duplications or massive segmental duplications. Genetic diversity analysis indicates that its stress resistance and sugar metabolism-related genes tend to be enriched in the chromosomal regions where the density of single-nucleotide polymorphisms is relatively low. Using transcriptomic data, we also illustrate the date palm’s unique sugar metabolism that underlies fruit development and ripening. Our large-scale genomic and transcriptomic data pave the way for further genomic studies not only on P. dactylifera but also other Arecaceae plants.
引用
收藏
相关论文
共 118 条
[21]  
Ohtsubo E(1996)Cretaceous angiosperm flowers: Innovation and evolution in plant reproduction Annu. Rev. Plant Phys. 47 431-332
[22]  
De Bodt S(1999)Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition J. Sci. Food Agr. 79 1345-24
[23]  
Maere S(1999)Chloroplast DNA evolves slowly in the palm family (Arecaceae) Plant Sci. 140 169-899
[24]  
Van de Peer Y(2011)A summary of fossil records for Arecaceae Plant Biol. 13 325-574
[25]  
Friis EM(2009)Palaeogenomics of plants: synteny-based modelling of extinct ancestors Postharvest Biol. Technol. 54 15-584
[26]  
Pedersen KR(1989)LEA proteins in higher plants: structure, function, gene expression and regulation Genetics 123 887-1034
[27]  
Crane PR(2006)Expression analysis of a sucrose synthase gene from sugar beet (Beta vulgaris L) Mamm. Genome 17 565-761
[28]  
Freeling M(2009)Role and regulation of sucrose-phosphate synthase in higher plants Nat. Genet. 41 579-U157
[29]  
Wilson MA(2007)The composition of maturing Omani dates Phil. Trans. R. Soc. B 362 1023-725
[30]  
Gaut B(2009)Differential expression of three sucrose-phosphate synthase isoforms during sucrose accumulation in citrus fruits ( J. Evol. Biol. 22 751-114