Diameter-Preserving Spanning Trees in Sparse Weighted Graphs

被引:0
作者
Yue Liu
Jing Huang
机构
[1] Tongji University,Department of Mathematics
[2] University of Victoria,Department of Mathematics and Statistics
来源
Graphs and Combinatorics | 2009年 / 25卷
关键词
Diameter-preserving spanning tree; Weighted graph; Shortest-paths tree; Minimum diameter spanning tree;
D O I
暂无
中图分类号
学科分类号
摘要
We give a simple sufficient condition for a weighted graph to have a diameter-preserving spanning tree. More precisely, let G = (V, E, fE) be a connected edge weighted graph with fE being the edge weight function. Let fV be the vertex weight function of G induced by fE as follows: fV(v) = max{fE(e) : e is incident with v} for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v \in V}$$\end{document} . We show that G contains a diameter-preserving spanning tree if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${d(G)\ge \frac{2}{3} \sum_{v\in V} f_V(v)}$$\end{document} where d(G) is the diameter of G. The condition is sharp in the sense that for any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\epsilon >0 }$$\end{document} , there exist weighted graphs G satisfying \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${d(G) > (\frac{2}{3}-\epsilon)\sum_{v\in V} f_V(v)}$$\end{document} and not containing a diameter-preserving spanning tree.
引用
收藏
页码:753 / 758
页数:5
相关论文
共 8 条
[1]  
Buckley F.(1988)A note on graphs with diameter-preserving spanning trees J. Graph Theory 12 525-528
[2]  
Lewinter M.(1995)On the minimum diameter spanning tree problem Inform. Process. Lett. 53 109-111
[3]  
Hassin R.(1991)Minimum diameter spanning trees and related problems SIAM J. Comput. 20 987-997
[4]  
Tamir A.(undefined)undefined undefined undefined undefined-undefined
[5]  
Ho J.(undefined)undefined undefined undefined undefined-undefined
[6]  
Lee D.T.(undefined)undefined undefined undefined undefined-undefined
[7]  
Chang C.(undefined)undefined undefined undefined undefined-undefined
[8]  
Wong C.K.(undefined)undefined undefined undefined undefined-undefined