Weakly compact operators onH∞

被引:0
作者
Manuel D. Contreras
Santiago Díaz
机构
[1] Universidad de Sevilla,Departamento de Matemática Aplicada II Escuela Superior de Ingenieros
来源
Integral Equations and Operator Theory | 1999年 / 33卷
关键词
Primary 46B25; 47A15; Secondary 32A35; 46B08; 46E15;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that a weakly compact operator fromH∞ or any of its even duals into an arbitrary Banach space is uniformly convexifying. By using this, we establish three dicothomies: (1) every operator defined onH∞ or any of its even duals either fixes a copy ofl∞ or factors through a Banach space having the Banach-Saks property; (2) every quotient ofH∞ or any of its even duals either contains a copy ofl∞ or is super-reflexive; (3) every subspace ofL1/H01 or any of its even duals either contains a complemented copy ofl1 or is super-reflexive.
引用
收藏
页码:381 / 388
页数:7
相关论文
共 15 条
  • [1] Beauzamy B.(1976)Opérateurs uniformément convexifiants Studia Math. 57 103-139
  • [2] Beauzamy B.(1977)Quelques propiétés des opérateurs uniformément convexifiants Studia Math. 60 211-222
  • [3] Beauzamy B.(1980)Propieté de Banach-Saks Studia Math. 66 227-235
  • [4] Bourgain J.(1982)Weakly compact operator on Jordan triples Studia Math. 75 193-226
  • [5] Bourgain J.(1984)(Ω) Acta Math. 152 1-48
  • [6] Bourgain J.(1984)Ultraproducts in Banach space theory Trans. Amer. Math. Soc. 286 313-337
  • [7] Chu Ch.-H.(1988)- Math. Ann. 281 451-458
  • [8] Iochum B.(1978)Absolute continuity in Banach space theory Commentationes Math. 1 109-118
  • [9] Diestel J.(1980)undefined J. Reine Angew. Math. 313 72-104
  • [10] Seifert C. J.(1986)undefined Math. Ann. 273 341-343