Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {Z}$$\end{document}-permutable subgroups of finite groups

被引:0
作者
A. A. Heliel
A. Ballester-Bolinches
R. Esteban-Romero
M. O. Almestady
机构
[1] King Abdulaziz University,Department of Mathematics, Faculty of Science 80203
[2] Beni-Suef University,Department of Mathematics, Faculty of Science
[3] Universitat de València,Departament d’Àlgebra
[4] Universitat Politècnica de València,Institut Universitari de Matemàtica Pura i Aplicada
[5] Universitat de València,Departament d’Àlgebra
关键词
Finite group; -soluble group; -supersoluble; -permutable subgroup; Subnormal subgroup; 20D10; 20D20; 20D35; 20D40;
D O I
10.1007/s00605-015-0756-1
中图分类号
学科分类号
摘要
Let Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {Z}$$\end{document} be a complete set of Sylow subgroups of a finite group G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}, that is, a set composed of a Sylow p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-subgroup of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} for each p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document} dividing the order of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}. A subgroup H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document} of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is called Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {Z}$$\end{document}-permutable if H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document} permutes with all members of Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {Z}$$\end{document}. The main goal of this paper is to study the embedding of the Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {Z}$$\end{document}-permutable subgroups and the influence of Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {Z}$$\end{document}-permutability on the group structure.
引用
收藏
页码:523 / 534
页数:11
相关论文
共 25 条
[1]  
Asaad M(2003)On permutable subgroups of finite groups Arch. Math. (Basel) 80 113-118
[2]  
Heliel AA(2007)On minimal non-supersoluble groups Rev. Mat. Iberoam. 23 127-142
[3]  
Ballester-Bolinches A(1963)On quasinormal subgroups of finite groups Math. Z. 82 125-132
[4]  
Esteban-Romero R(1993)Eine Bemerkung über das Reduzieren von Hallgruppen in endlichen auflösbaren Gruppen Arch. Math. (Basel) 60 505-507
[5]  
Deskins WE(1937)On the Sylow systems of a soluble group Proc. Lond. Math. Soc. 2 316-323
[6]  
Doerk K(2004)On Arch. Math. (Basel) 83 9-16
[7]  
Hall P(1962)-permutability of minimal subgroups of finite groups Math. Z. 78 205-221
[8]  
Heliel AA(2008)Sylow-Gruppen und Subnormalteiler endlicher Gruppen Israel J. Math. 164 75-85
[9]  
Li X(2005)-permutable subgroups and Commun. Algebra 33 3353-3358
[10]  
Li Y(2005)-nilpotency of finite groups II J. Pure Appl. Algebra 202 72-81