Navier-stokes equations on unbounded domains with rough initial data

被引:0
作者
Peer Christian Kunstmann
机构
[1] Universität Karlsruhe,Institut für Analysis
来源
Czechoslovak Mathematical Journal | 2010年 / 60卷
关键词
Navier-Stokes equations; mild solutions; Stokes operator; extrapolation spaces; -functional calculus; general unbounded domains; pressure term; 35Q30; 35K55;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Navier-Stokes equations in unbounded domains Ω ⊆ ℝn of uniform C1,1-type. We construct mild solutions for initial values in certain extrapolation spaces associated to the Stokes operator on these domains. Here we rely on recent results due to Farwig, Kozono and Sohr, the fact that the Stokes operator has a bounded H∞-calculus on such domains, and use a general form of Kato’s method. We also obtain information on the corresponding pressure term.
引用
收藏
页码:297 / 313
页数:16
相关论文
共 20 条
  • [1] Amann H.(2000)On the strong solvability of the Navier-Stokes equations J. Math. Fluid Mech. 2 16-98
  • [2] Farwig R.(2005)An Acta Math. 195 21-53
  • [3] Kozono H.(2007)-approach to Stokes and Navier-Stokes equations in general domains Arch. Math. 88 239-248
  • [4] Sohr H.(1985)On the Helmholtz decomposition in general unbounded domains Arch. Ration. Mech. Anal. 89 251-265
  • [5] Farwig R.(2007)Domains of fractional powers of the Stokes operator in SIAM J. Control Optim. 45 2094-2118
  • [6] Kozono H.(2009) spaces J. Math. Fluid Mech 11 492-535
  • [7] Sohr H.(2006)Weighted admissibility and wellposedness of linear systems in Banach spaces Math. Ann. 336 747-801
  • [8] Giga Y.(1994)On Kato’s method for Navier Stokes equations Commun. Partial Differ. Equations 19 959-1014
  • [9] Haak B. H.(2008)Perturbation and interpolation theorems for the Arch. Math. 91 178-186
  • [10] Kunstmann P. C.(2004)-calculus with applications to differential operators Arch. Math. 82 415-431