Equivalences of the large deviation principle for Gibbs measures and critical balance in the Ising model

被引:0
作者
Priscilla E. Greenwood
Jiaming Sun
机构
[1] University of British Columbia,Department of Mathematics
来源
Journal of Statistical Physics | 1997年 / 86卷
关键词
Ising model; Gibbs measures; large-deviation principle;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we obtain the equivalence of the large deviation principle for Gibbs measures with and without an external field. For the Ising model, the equivalence allows us to study the result of competing influences of a positive external fieldh and a negative boundary condition in the cube (Λ(B/h) ash↘0 for variousB. We find a critical balance at a valueB0 ofB.
引用
收藏
页码:149 / 164
页数:15
相关论文
共 11 条
  • [1] Ioffe D.(1994)Large-deviations for the 2D Ising model: A lower bound without cluster expansions J. Stat. Phys. 74 411-432
  • [2] Ioffe D.(1995)Exact large deviation bounds up to Prob. Theory Rel. Fields. 102 313-330
  • [3] Martirosyan D. G.(1987) for the Ising model in two dimensions Sov. J. Contemp. Math. Anal. 22 59-83
  • [4] O'Brien G. L.(1996)Theorems on strips in the classical Ising model J. Theoret. Prob. 9 15-35
  • [5] Schonmann R. H.(1987)Sequences of capacities, with connections to large-deviation theory Common. Math. Phys. 112 409-442
  • [6] Schonmann R. H.(1994)Second order large deviation estimates for ferromagnetic systems in the phase coexistence region Commun. Math. Phys. 161 1-49
  • [7] Schonmann R. H.(1995)Slow droplet-driven relaxation of stochastic Ising models in the vicinity of the phase coexistence region Commun. Math. Phys. 170 453-482
  • [8] Shlosman S. B.(1996)Complete analyticity for 2D Ising completed J. Stat. Phys. 83 867-905
  • [9] Schonmann R. H.(1985)Constrained variational problem with applications to the Ising model Z. Wahrsch. Verw. Geb. 69 551-565
  • [10] Shlosman S. B.(undefined)Upper bounds for large deviations of dependent random variables undefined undefined undefined-undefined