Integrated Density of States for Ergodic Random Schrödinger Operators on Manifolds

被引:0
作者
Norbert Peyerimhoff
Ivan Veselić
机构
[1] Ruhr-Universität Bochum,Fakultär für Mathematik
来源
Geometriae Dedicata | 2002年 / 91卷
关键词
integrated density of states; random Schrödinger operators; Riemannian manifolds with compact quotient; amenable groups; ergodic theorem;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Riemannian universal covering of a compact manifold M = X/Γ and assume that Γ is amenable. We show the existence of a (nonrandom) integrated density of states for an ergodic random family of Schrödinger operators on X.
引用
收藏
页码:117 / 135
页数:18
相关论文
共 36 条
[1]  
Adachi T.(1993)A note on the Følner condition for amenability (dedicated to Professor Nobunori Ikebe) Nagoya Math. J. 131 67-74
[2]  
Adachi T.(1993)Density of states in spectral geometry Comment. Math. Helv. 68 480-493
[3]  
Sunada T.(1972)The degree of polynomial growth of finitely generated nilpotent groups Proc. London Math. Soc. 25 603-614
[4]  
Bass H.(1993)On domain monotonicity of the Neumann heat kernel J. Funct. Anal. 116 215-224
[5]  
Bass R. F.(1992)On the spectrum of periodic elliptic operators Nagoya Math. J. 126 159-171
[6]  
Burdzy K.(1994)Reflecting Brownian motions and comparison theorems for Neumann heat kernels J. Funct. Anal. 123 109-128
[7]  
Brüning J.(1986)Heat diffusion in insulated convex domains J. LondonMath. Soc. 34 473-478
[8]  
Sunada T.(1982)Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds J. Differential Geom. 17 15-53
[9]  
Carmona R.(1981)Groups of polynomial growth and expanding maps IHES Publ. Math. 53 53-73
[10]  
Zheng W.(1999)Horospherical means and uniform distribution of curves Math. Z. 231 655-677