Analytic properties of solutions of a class of third-order equations

被引:0
作者
T. K. Andreeva
I. P. Martynov
V. A. Pron’ko
机构
[1] Grodno State University,
来源
Differential Equations | 2011年 / 47卷
关键词
General Solution; Singular Point; Arbitrary Constant; Analytic Property; Rational Solution;
D O I
暂无
中图分类号
学科分类号
摘要
We derive necessary and sufficient conditions for the general solution of an autonomous third-order ordinary differential equation of certain form to be meromorphic. We obtain equations with a movable singular line all of whose points are essentially singular points of the general solution.
引用
收藏
页码:1231 / 1236
页数:5
相关论文
共 10 条
[1]  
Martynov I.P.(1985)Third-Order Equations without Movable Critical Singularities Differ. Uravn. 21 937-946
[2]  
Martynov I.P.(1985)Analytic Properties of Solutions of a Third-Order Differential Equation Differ. Uravn. 21 764-771
[3]  
Martynov I.P.(1988)A Third-Order Equation of Painlevé Type Differ. Uravn. 24 1640-1641
[4]  
Pron’ko V.A.(1969)Simplificés de Painlevé dont les solutions sont à points critiques isolés fixes Bull. Cl. Sci. Acad. Roy. Belg. 55 883-915
[5]  
Carton-Lebrun C.(1980)A Connection between Nonlinear Evolution Equations and Ordinary Differential Equations of P-Type J. Math. Phys. 21 715-721
[6]  
Ablowitz M.J.(1964)Differential Equations with Fixed Critical Points Ann. di Math. 64 229-364
[7]  
Ramani A.(1911)Sur les équations différentielles du troisième ordre et d’ordre supérieur dont l’intégrale générale a ses points critiques fixes Acta Math. 34 317-385
[8]  
Segur H.(undefined)undefined undefined undefined undefined-undefined
[9]  
Bureau F.(undefined)undefined undefined undefined undefined-undefined
[10]  
Chazy J.(undefined)undefined undefined undefined undefined-undefined