On Ψ-boundedness and Ψ-stability of matrix Lyapunov systems

被引:16
作者
Murty M.S.N. [1 ]
Suresh Kumar G. [1 ]
机构
[1] Department of Applied Mathematics, Acharya Nagarjuna University Post Graduate Centre, Nuzvid
关键词
Fundamental matrix; Kronecker product; Lebesgue Ψ-integrable function; Lyapunov system; Ψ-(uniform) stability; Ψ-bounded;
D O I
10.1007/s12190-007-0007-2
中图分类号
学科分类号
摘要
In this paper we obtain a necessary and sufficient condition for the existence of at least one Ψ-bounded solution and also obtained sufficient conditions for Ψ-(uniform) stability of the Kronecker product system associated with the matrix Lyapunov system X'(t)=A(t)X(t)+X(t)B(t)+F(t). © 2007 KSCAM and Springer-Verlag.
引用
收藏
页码:67 / 84
页数:17
相关论文
共 9 条
  • [1] Akinyele O., On partial stability and boundedness of degree k, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat., 65, 8, pp. 259-264, (1978)
  • [2] Avramescu C., Asupra comportării asimptotice a soluţiilor unor ecuaţii funcţionale, An. Univ. Timis. Ser. Stiinte Mat. Fiz., VI, pp. 41-55, (1968)
  • [3] Constantin A., Asymptotic properties of solutions of differential equations, An. Univ. Timis. Ser. Stiinte Mat., XXX, 2–3, pp. 183-225, (1992)
  • [4] Diamandescu A., Existence of Ψ—bounded solutions for a system of differential equation, Electron. J. Differ. Equ., 63, pp. 1-6, (2004)
  • [5] Graham A., Kronecker Products and Matrix Calculus
  • [6] with Applications, (1981)
  • [7] Hallam T.G., On asymptotic equivalence of the bounded solutions of two systems of differential equations, Mich. Math. J., 16, pp. 353-363, (1969)
  • [8] Morchalo J., On Ψ−L p -stability of nonlinear systems of differential equations, An. Stiint. Univ. “Al.I. Cuza” Iasi I-a Mat., XXXVI, 4, pp. 353-360, (1990)
  • [9] Murty M.S.N., Appa Rao B.V., Suresh Kumar G., Controllability, observability and realizability of matrix Lyapunov systems, Bull. Korean Math. Soc., 43, 1, pp. 149-159, (2006)