Une variante de l'inegalite de Hardy

被引:0
作者
Lohoué N. [1 ]
机构
[1] Université de Paris-Sud, Mathematique, Bât. 525
关键词
Primary 22E80; Secondary 43A90; 60B99; 60J60;
D O I
10.1007/s00229-007-0084-4
中图分类号
学科分类号
摘要
[No abstract available]
引用
收藏
页码:73 / 78
页数:5
相关论文
共 8 条
  • [1] Alexopoulos G., Sub-laplacians with drift on Lie groups of polynomial volume growth, Memoirs Am. Math. Soc, 155, (2002)
  • [2] Campogna L., Danielli D., Carafalo N., Subelliptic molliers and a basic pointwise estimate of Poincaré type, Math. Z, 226, pp. 147-154, (1997)
  • [3] Diambrosio L., Hardy type inequalities related to degenerate ellipric differential operators, Ann. Sc. Norm. Sup. Pisa Cl. Sci, 4, 5, pp. 451-486, (2005)
  • [4] Franchi B., Lu G., Wheeden R., Representation formula, Ann. Inst. Fourier, 42, 2, pp. 577-604, (1955)
  • [5] Han Y., Niu P.G., Hardy-Sobolev type inequalities on H-type groups, spaces, Manuscripta Math, 118, 2, pp. 235-252, (2005)
  • [6] Hunt R.A., L<sub>pq</sub> spaces, Enseignement Math, 12, 2, pp. 249-276, (1966)
  • [7] Niu P., Zang H., Wang H.Q., Hardy type and Rellich type inequalities on the Heisenberg groups, Proc. Am. Math. Soc, 129, pp. 3623-3630, (2001)
  • [8] Varopoulos N., Saloff-Coste L., Coulhon T.H., Analysis and geometry on groups, Cambridge Tracts Math, 100, (1993)