A Haar-like Construction for the Ornstein Uhlenbeck Process

被引:0
作者
Thibaud Taillefumier
Marcelo O. Magnasco
机构
[1] The Rockefeller University,Laboratory of Mathematical Physics
来源
Journal of Statistical Physics | 2008年 / 132卷
关键词
Ornstein-Uhlenbeck process; Brownian motion; Haar basis;
D O I
暂无
中图分类号
学科分类号
摘要
The classical Haar construction of Brownian motion uses a binary tree of triangular wedge-shaped functions. This basis has compactness properties which make it especially suited for certain classes of numerical algorithms. We present a similar basis for the Ornstein-Uhlenbeck process, in which the basis elements approach asymptotically the Haar functions as the index increases, and preserve the following properties of the Haar basis: all basis elements have compact support on an open interval with dyadic rational endpoints; these intervals are nested and become smaller for larger indices of the basis element, and for any dyadic rational, only a finite number of basis elements is nonzero at that number. Thus the expansion in our basis, when evaluated at a dyadic rational, terminates in a finite number of steps. We prove the covariance formulae for our expansion and discuss its statistical interpretation.
引用
收藏
页码:397 / 415
页数:18
相关论文
共 21 条
  • [1] Siegert A.J.F.(1951)On the first passage time probability problem Phys. Rev. 81 617-623
  • [2] Ricciardi L.M.(1988)First-passage time density and moments of the Ornstein-Uhlenbeck process J. Appl. Probab. 25 43-111
  • [3] Sato S.(2000)A correction note on the first passage time of an Ornstein-Uhlenbeck process to a boundary Finance Stoch. 4 109-980
  • [4] Leblanc B.(2005)Representations of the first hitting time density of an Ornstein-Uhlenbeck process Stoch. Models 21 967-231
  • [5] Renault O.(2001)A Monte Carlo method for the simulation of first passage times for diffusion processes Methodol. Comput. Appl. Probab. 3 215-1166
  • [6] Scaillet O.(1985)Numerical integration of multiplicative-noise stochastic differential equations SIAM J. Numer. Anal. 22 1153-2654
  • [7] Alili L.(1991)Second-order algorithm for the numerical integration of colored-noise problems Phys. Rev. A 46 2649-603
  • [8] Patie P.(1992)Stochastic Runge-Kutta algorithms. I. White noise Phys. Rev. A 45 600-1971
  • [9] Pedersen J.L.(1996)Negative resistance and rectification in Brownian transport Phys. Rev. Lett. 76 1968-1045
  • [10] Giraudo M.T.(1997)An integral algorithm for numerical integration of one-dimensional additive colored noise problems J. Stat. Phys. 90 1037-undefined