Back-action-evading measurements of nanomechanical motion

被引:198
作者
Hertzberg, J. B. [2 ,3 ]
Rocheleau, T. [2 ]
Ndukum, T. [2 ]
Savva, M. [2 ]
Clerk, A. A. [4 ]
Schwab, K. C. [1 ]
机构
[1] CALTECH, Pasadena, CA 91125 USA
[2] Cornell Univ, Dept Phys, Atom & Solid State Phys Lab, Ithaca, NY 14853 USA
[3] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[4] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada
基金
美国国家科学基金会;
关键词
QUANTUM LIMIT; OSCILLATOR; CAVITY;
D O I
10.1038/NPHYS1479
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
When carrying out ultrasensitive continuous measurements of position, one must ultimately confront the fundamental effects of detection back-action. Back-action forces set a lower bound on the uncertainty in the measured position, the 'standard quantum limit' (SQL). Recent measurements of nano-and micromechanical resonators are rapidly approaching this limit. Making measurements with sensitivities surpassing the SQL will require a new kind of approach: back-action-evading (BAE), quantum non-demolition measurement techniques. Here we realize a BAE measurement based on the parametric coupling between a nanomechanical and a microwave resonator. We demonstrate for the first time BAE detection of a single quadrature of motion with sensitivity four times the quantum zero-point motion of the mechanical resonator. We identify a limiting parametric instability inherent in BAE measurement, and describe how to improve the technique to surpass the SQL and permit the formation of squeezed states of motion.
引用
收藏
页码:213 / 217
页数:5
相关论文
共 43 条
  • [1] Observation of a kilogram-scale oscillator near its quantum ground state
    Abbott, B.
    Abbott, R.
    Adhikari, R.
    Ajith, P.
    Allen, B.
    Allen, G.
    Amin, R.
    Anderson, S. B.
    Anderson, W. G.
    Arain, M. A.
    Araya, M.
    Armandula, H.
    Armor, P.
    Aso, Y.
    Aston, S.
    Aufmuth, P.
    Aulbert, C.
    Babak, S.
    Ballmer, S.
    Bantilan, H.
    Barish, B. C.
    Barker, C.
    Barker, D.
    Barr, B.
    Barriga, P.
    Barton, M. A.
    Bastarrika, M.
    Bayer, K.
    Betzwieser, J.
    Beyersdorf, P. T.
    Bilenko, I. A.
    Billingsley, G.
    Biswas, R.
    Black, E.
    Blackburn, K.
    Blackburn, L.
    Blair, D.
    Bland, B.
    Bodiya, T. P.
    Bogue, L.
    Bork, R.
    Boschi, V.
    Bose, S.
    Brady, P. R.
    Braginsky, V. B.
    Brau, J. E.
    Brinkmann, M.
    Brooks, A.
    Brown, D. A.
    Brunet, G.
    [J]. NEW JOURNAL OF PHYSICS, 2009, 11
  • [2] [Anonymous], 1992, Quantum Measurement
  • [3] Radiation-pressure cooling and optomechanical instability of a micromirror
    Arcizet, O.
    Cohadon, P. -F.
    Briant, T.
    Pinard, M.
    Heidmann, A.
    [J]. NATURE, 2006, 444 (7115) : 71 - 74
  • [4] Quantum analysis of a linear dc SQUID mechanical displacement detector
    Blencowe, M. P.
    Buks, E.
    [J]. PHYSICAL REVIEW B, 2007, 76 (01)
  • [5] On the measurement of a weak classical force coupled to a harmonic oscillator: Experimental progress
    Bocko, MF
    Onofrio, R
    [J]. REVIEWS OF MODERN PHYSICS, 1996, 68 (03) : 755 - 799
  • [6] Braginskii V. B., 1975, Soviet Physics - Uspekhi, V17, P644, DOI 10.1070/PU1975v017n05ABEH004362
  • [7] QUANTUM NON-DEMOLITION MEASUREMENTS
    BRAGINSKY, VB
    VORONTSOV, YI
    THORNE, KS
    [J]. SCIENCE, 1980, 209 (4456) : 547 - 557
  • [8] Thermal and back-action noises in dual-sphere gravitational-wave detectors
    Briant, T
    Cerdonio, M
    Conti, L
    Heidmann, A
    Lobo, A
    Pinard, M
    [J]. PHYSICAL REVIEW D, 2003, 67 (10):
  • [9] Optical phase-space reconstruction of mirror motion at the attometer level
    Briant, T
    Cohadon, PF
    Pinard, M
    Heidmann, A
    [J]. EUROPEAN PHYSICAL JOURNAL D, 2003, 22 (01) : 131 - 140
  • [10] Observation of back-action noise cancellation in interferometric and weak force measurements
    Caniard, T.
    Verlot, P.
    Briant, T.
    Cohadon, P. -F.
    Heidmann, A.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (11)