Complexity and approximation of the connected set-cover problem

被引:0
作者
Wei Zhang
Weili Wu
Wonjun Lee
Ding-Zhu Du
机构
[1] Xi’an Jiaotong University,Department of Applied Mathematics
[2] University of Texas at Dallas,Department of Computer Science
[3] Korea University,Department of Computer Science and Engineering
[4] University of Texas at Dallas,Department of Computer Science
[5] USA and WCU FNOT Research Center at Korea University,undefined
来源
Journal of Global Optimization | 2012年 / 53卷
关键词
Connected set-cover; Computational complexity; Approximation algorithms;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the computational complexity and approximation complexity of the connected set-cover problem. We derive necessary and sufficient conditions for the connected set-cover problem to have a polynomial-time algorithm. We also present a sufficient condition for the existence of a (1 +  ln δ)-approximation. In addition, one such (1 +  ln δ)-approximation algorithm for this problem is proposed. Furthermore, it is proved that there is no polynomial-time \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${O(\log^{2-\varepsilon} n)}$$\end{document} -approximation for any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon\,{>}\,0}$$\end{document} for the connected set-cover problem on general graphs, unless NP has an quasi-polynomial Las-Vegas algorithm.
引用
收藏
页码:563 / 572
页数:9
相关论文
empty
未找到相关数据