Ultra-low-dose CT for attenuation correction: dose savings and effect on PET quantification for protocols with and without tin filter

被引:3
作者
Bebbington N.A. [1 ]
Christensen K.B. [2 ]
Østergård L.L. [2 ]
Holdgaard P.C. [2 ]
机构
[1] Siemens Healthcare A/S, Borupvang 9, Ballerup
[2] Department of Nuclear Medicine, Lillebaelt Hospital - University Hospital of Southern Denmark, Beriderbakken 4, Vejle
关键词
Attenuation correction; CT; Dose; PET; Quantification; Tin filter; Ultra-low;
D O I
10.1186/s40658-023-00585-0
中图分类号
学科分类号
摘要
Background: Ultra-low-dose (ULD) computed tomography (CT) scans should be used when CT is performed only for attenuation correction (AC) of positron emission tomography (PET) data. A tin filter can be used in addition to the standard aluminium bowtie filter to reduce CT radiation dose to patients. The aim was to determine how low CT doses can be, when utilised for PET AC, with and without the tin filter, whilst providing adequate PET quantification. Methods: A water-filled NEMA image quality phantom was imaged in three configurations with 18F-FDG: (1) water only (0HU); (2) with cylindrical insert containing homogenous mix of sand, flour and water (SFW, approximately 475HU); (3) with cylindrical insert containing sand (approximately 1100HU). Each underwent one-bed-position (26.3 cm) PET-CT comprising 1 PET and 13 CT acquisitions. CT acquisitions with tube current modulation were performed at 120 kV/50 mAs-ref (reference standard), 100 kV/7 mAs-ref (standard ULDCT for PET AC protocol), Sn140kV (mAs range 7–50-ref) and Sn100kV (mAs range 12–400-ref). PET data were reconstructed with μ-maps provided by each CT dataset, and PET activity concentration measured in each reconstruction. Differences in CT dose length product (DLP) and PET quantification were determined relative to the reference standard. Results: At each tube voltage, changes in PET quantification were greater with increasing density and reducing mAs. Compared with the reference standard, differences in PET quantification for the standard ULDCT protocol for the three phantoms were ≤ 1.7%, with the water phantom providing a DLP of 7mGy.cm. With tin filter at Sn100kV, differences in PET quantification were negligible (≤ 1.2%) for all phantoms down to 50mAs-ref, proving a DLP of 2.8mGy.cm, at 60% dose reduction compared with standard ULDCT protocol. Below 50mAs-ref, differences in PET quantification were > 2% for at least one phantom (2.3% at 25mAs-ref in SFW; 6.4% at 12mAs-ref in sand). At Sn140kV/7mAs-ref, quantification differences were ≤ 0.6% in water, giving 3.8mGy.cm DLP, but increased to > 2% at bone-equivalent densities. Conclusions: CT protocols for PET AC can provide ultra-low doses with adequate PET quantification. The tin filter can allow 60–87% lower dose than the standard ULDCT protocol for PET AC, depending on tissue density and accepted change in PET quantification. © 2023, Springer Nature Switzerland AG.
引用
收藏
相关论文
共 29 条
  • [1] Tsai Y.-J., Liu C., Pitfalls on PET/CT due to artifacts and instrumentation, Semin Nucl Med, 51, pp. 646-656, (2021)
  • [2] Carney J.P.J., Townsend D.W., Rappoport V., Bendriem B., Method for transforming CT images for attenuation correction in PET/CT imaging, Med Phys, 33, pp. 976-983, (2006)
  • [3] Bebbington N.A., Haddock B.T., Bertilsson H., Hippelainen E., Husby E.M., Tunninen V.I., Et al., A Nordic survey of CT doses in hybrid PET/CT and SPECT/CT examinations, EJNMMI Phys, 6, (2019)
  • [4] Marti-Climent J.M., Prieto E., Moran V., Sancho L., Rodriguez-Fraile M., Arbizu J., Et al., Effective dose estimation for oncological and neurological PET/CT procedures, EJNMMI Res, 7, (2017)
  • [5] Xia T., Alessio A.M., Kinahan P.E., Limits of ultra-low dose CT attenuation correction for PET/CT, IEEE Nucl Sci Symp Conf Rec, 2010, 2009, pp. 3074-3079, (1997)
  • [6] Fahey F.H., Palmer M.R., Strauss K.J., Zimmerman R.E., Badawi R.D., Treves S.T., Dosimetry and adequacy of CT-based attenuation correction for pediatric PET: phantom study, Radiology, 243, pp. 96-104, (2007)
  • [7] Novoa Ferro M., Santos Armentia E., Silva Priegue N., Jurado Basildo C., Sepulveda Villegas C.A., Delgado S.-G., Ultralow-dose CT of the petrous bone using iterative reconstruction technique, tin filter and high resolution detectors allows an adequate assessment of the petrous bone structures, Radiologia (Panama), 64, pp. 206-213, (2022)
  • [8] Stern C., Sommer S., Germann C., Galley J., Pfirrmann C.W.A., Fritz B., Et al., Pelvic bone CT: can tin-filtered ultra-low-dose CT and virtual radiographs be used as alternative for standard CT and digital radiographs?, Eur Radiol, 31, pp. 6793-6801, (2021)
  • [9] Schule S., Gartner K., Halt D., Beer M., Hackenbroch C., Low-dose CT imaging of the Pelvis in follow-up examinations-significant dose reduction and impact of tin filtration: evaluation by phantom studies and first systematic retrospective patient analyses, Invest Radiol, 57, pp. 789-801, (2022)
  • [10] Martini K., Higashigaito K., Barth B.K., Baumueller S., Alkadhi H., Frauenfelder T., Ultralow-dose CT with tin filtration for detection of solid and sub solid pulmonary nodules: a phantom study, Br J Radiol, 88, (2015)