Nuclear numerical range and quantum error correction codes for non-unitary noise models

被引:0
作者
Patryk Lipka-Bartosik
Karol Życzkowski
机构
[1] University of Warsaw,Faculty of Physics
[2] Polish Academy of Sciences,Center for Theoretical Physics
[3] Jagiellonian University,Institute of Physics
来源
Quantum Information Processing | 2017年 / 16卷
关键词
Quantum error correction; Numerical range; Quantum noise; Non-unitary matrices;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a notion of nuclear numerical range defined as the set of expectation values of a given operator A among normalized pure states, which belong to the nucleus of an auxiliary operator Z. This notion proves to be applicable to investigate models of quantum noise with block-diagonal structure of the corresponding Kraus operators. The problem of constructing a suitable quantum error correction code for this model can be restated as a geometric problem of finding intersection points of certain sets in the complex plane. This technique, worked out in the case of two-qubit systems, can be generalized for larger dimensions.
引用
收藏
相关论文
共 25 条
  • [1] Knill E(1997)Theory of quantum error-correcting codes Phys. Rev. A 55 900-91
  • [2] Laflamme R(1996)Mixed state entanglement and quantum error correction Phys. Rev. A 54 3824-839
  • [3] Bennet CH(2006)Quantum error correcting codes from the compression formalism Rep. Math. Phys. 58 77-1986
  • [4] DiVincenzo DP(2006)Higher-rank numerical ranges and compression problems Linear Algebra Appl. 2–3 828-459
  • [5] Smolin JA(2010)Restricted numerical range: a versatile tool in the theory of quantum information J. Math. Phys. 51 102204-undefined
  • [6] Wootters WK(1996)A simple proof of the elliptical range theorem Proc. Am. Math. Soc. 124 1985-undefined
  • [7] Choi MD(2005)Information-capacity description of spin-chain correlations Phys. Rev. A 71 032314-undefined
  • [8] Kribs DW(2003)Quantum communication through an unmodulated spin chain Phys. Rev. Lett. 91 207901-undefined
  • [9] Życzkowski K(2015)Photon-added chaotic field and its damping in a thermo enviroment Can. J. Phys. 93 456-undefined
  • [10] Choi MD(2014)Approximate quantum error correction for generalized amplitude-damping errors Phys. Rev. A 89 022316-undefined