Positive periodic solution for a nonautonomous delay differential equation

被引:0
作者
Bing Liu
机构
[1] Department of Mathematics, Huazhong University of Science and Technology
基金
中国博士后科学基金;
关键词
Delay differential equation; Krsnoselskii fix point theorem; Positive periodic solution;
D O I
10.1007/s10255-003-0106-2
中图分类号
学科分类号
摘要
In this paper, by using the Krasnoselskii fixed point theorem, we study the existence of one or multiple positive periodic solutions of a nonautonomous delay differential equation. We also give some examples to demonstrate our results. © Springer-Verlag 2003.
引用
收藏
页码:307 / 316
页数:9
相关论文
共 12 条
[1]  
Chow S.N., Existence of periodic solutions of autonomous functional differential equations, J. Diff. Eqs, 15, pp. 350-375, (1974)
[2]  
Deimling K., Nonlinear functional analysis, (1985)
[3]  
Gopalsamy K., He X., Wen L., On a periodic neutral logistic equation, Glasgow Math. J, 33, pp. 281-286, (1991)
[4]  
Gopalsamy K., Zhang B.G., On a neutral delay logistiic equation, Dynamics Stability systems, 2, pp. 183-195, (1988)
[5]  
Hale J.K., Theory of functional differential equations, (1977)
[6]  
Krasnoselskii M.A., Positive solution of operator equations, (1964)
[7]  
Kuang Y., Delay differential equation with applications in population dynamics, (1993)
[8]  
Li Y.K., Periodic solutions of a periodic neutral delay equation, J. Math. Anal. Appl, 214, pp. 11-21, (1997)
[9]  
Mallet J., Nussbaum R., Global continuation and asymptotic behavior for periodic solutions of a differential delay equation, Ann. di Math. Pured. Appl, 145, pp. 33-128, (1986)
[10]  
Wu J.H., Xia H.X., Existence of periodic solutions to integro-differential equations of neutral type via limiting equations, Math. Proc. Camb. Phil. Soc, 112, pp. 403-418, (1992)