Conservation Laws for the Schrödinger—Newton Equations

被引:0
作者
G. Gubbiotti
M. C. Nucci
机构
[1] Università di Perugia & INFN Sezione Perugia,Dipartimento di Matematica e Informatica
来源
Journal of Nonlinear Mathematical Physics | 2012年 / 19卷
关键词
Schrödinger—Newton equations; calculus of variations; Noether’s theorem; 02.30.Jr; 02.30.Xx; 11.30.-j;
D O I
暂无
中图分类号
学科分类号
摘要
In this Letter a first-order Lagrangian for the Schrödinger—Newton equations is derived by modifying a second-order Lagrangian proposed by Christian [Exactly soluble sector of quantum gravity, Phys. Rev. D56(8) (1997) 4844–4877]. Then Noether’s theorem is applied to the Lie point symmetries determined by Robertshaw and Tod [Lie point symmetries and an approximate solution for the Schrödinger—Newton equations, Nonlinearity19(7) (2006) 1507–1514] in order to find conservation laws of the Schrödinger—Newton equations.
引用
收藏
页码:292 / 299
页数:7
相关论文
共 50 条
[31]   CONSERVATION LAWS OF NONHOLONOMIC NONCONSERVATIVE DYNAMICAL SYSTEMS [J].
Liu Duan (Department of Applied Mechanics .
Acta Mechanica Sinica, 1989, (02) :167-175
[32]   Fractional conservation laws in optimal control theory [J].
Frederico, Gastao S. F. ;
Torres, Delfim F. M. .
NONLINEAR DYNAMICS, 2008, 53 (03) :215-222
[33]   One-dimensional gas dynamics equations of a polytropic gas in Lagrangian coordinates: Symmetry classification, conservation laws, difference schemes [J].
Dorodnitsyn, V. A. ;
Kozlov, R. ;
Meleshko, S. V. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 74 :201-218
[34]   Conservation Laws and Stability of Field Theories of Derived Type [J].
Kaparulin, Dmitry S. .
SYMMETRY-BASEL, 2019, 11 (05)
[35]   Canonical formulation and conservation laws of thermoelasticity without dissipation [J].
Kalpakides, VK ;
Maugin, GA .
REPORTS ON MATHEMATICAL PHYSICS, 2004, 53 (03) :371-391
[36]   A multiplicity result for a double perturbed Schrödinger-Bopp-Po dolsky-Pro ca system [J].
Talluri, Matteo .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 540 (02)
[37]   CONSERVATION LAWS AND SYMMETRIES OF SYSTEMS WITH UNILATERAL CONSTRAINTS IN PHASE SPACE [J].
Zhang Yi (Department of Basic Courses .
Acta Mechanica Solida Sinica, 1999, 12 (01) :22-30
[38]   Conservation laws and symmetries of systems with unilateral constraints in phase space [J].
Zhang, Y ;
Mei, FX .
ACTA MECHANICA SOLIDA SINICA, 1999, 12 (01) :22-30
[39]   Symmetries, Lagrangians and Conservation Laws of an Easter Island Population Model [J].
Nucci, M. C. ;
Sanchini, G. .
SYMMETRY-BASEL, 2015, 7 (03) :1613-1632
[40]   Lie symmetry analysis and conservation laws of axially uniform strings [J].
Wu, Mengmeng ;
Xia, Lili ;
Lan, Yudan .
INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2024, 12 (05) :1259-1269