Conservation Laws for the Schrödinger—Newton Equations

被引:0
作者
G. Gubbiotti
M. C. Nucci
机构
[1] Università di Perugia & INFN Sezione Perugia,Dipartimento di Matematica e Informatica
来源
Journal of Nonlinear Mathematical Physics | 2012年 / 19卷
关键词
Schrödinger—Newton equations; calculus of variations; Noether’s theorem; 02.30.Jr; 02.30.Xx; 11.30.-j;
D O I
暂无
中图分类号
学科分类号
摘要
In this Letter a first-order Lagrangian for the Schrödinger—Newton equations is derived by modifying a second-order Lagrangian proposed by Christian [Exactly soluble sector of quantum gravity, Phys. Rev. D56(8) (1997) 4844–4877]. Then Noether’s theorem is applied to the Lie point symmetries determined by Robertshaw and Tod [Lie point symmetries and an approximate solution for the Schrödinger—Newton equations, Nonlinearity19(7) (2006) 1507–1514] in order to find conservation laws of the Schrödinger—Newton equations.
引用
收藏
页码:292 / 299
页数:7
相关论文
共 50 条
  • [21] Conservation Laws of Fractional Classical Fields
    Muslih S.I.
    Agrawal O.P.
    Rabei E.
    International Journal of Applied and Computational Mathematics, 2023, 9 (5)
  • [22] BOUNDARY CONDITIONS FOR INFINITE CONSERVATION LAWS
    Rosenhaus, V.
    Bruzon, M. S.
    Gandarias, M. L.
    REPORTS ON MATHEMATICAL PHYSICS, 2016, 78 (03) : 345 - 370
  • [23] A COMPARISON OF CONSERVATION LAWS OF THE BOUSSINESQ SYSTEM
    Saberi, Elaheh
    Hejazi, S. Reza
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2019, 43 (02): : 173 - 200
  • [24] Fractional conservation laws in optimal control theory
    Gastão S. F. Frederico
    Delfim F. M. Torres
    Nonlinear Dynamics, 2008, 53 : 215 - 222
  • [25] Conservation laws of linear elasticity in stress formulations
    Li, SF
    Gupta, A
    Markenscoff, X
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2053): : 99 - 116
  • [26] Conservation laws for Birkhoffian systems of Herglotz type
    Zhang, Yi
    Tian, Xue
    CHINESE PHYSICS B, 2018, 27 (09)
  • [27] Discrete Field Theory: Symmetries and Conservation Laws
    Skopenkov, M.
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2023, 26 (03)
  • [28] Continuous symmetries and conservation laws in chiral media
    Crimin, Frances
    Mackinnon, Neel
    Gotte, Jorg B.
    Barnett, Stephen M.
    COMPLEX LIGHT AND OPTICAL FORCES XIV, 2020, 11297
  • [29] Discrete Field Theory: Symmetries and Conservation Laws
    M. Skopenkov
    Mathematical Physics, Analysis and Geometry, 2023, 26
  • [30] Conservation laws for invariant functionals containing compositions
    Frederico, Gastao S. F.
    Torres, Delfim F. M.
    APPLICABLE ANALYSIS, 2007, 86 (09) : 1117 - 1126