Conservation Laws for the Schrödinger—Newton Equations

被引:0
作者
G. Gubbiotti
M. C. Nucci
机构
[1] Università di Perugia & INFN Sezione Perugia,Dipartimento di Matematica e Informatica
来源
Journal of Nonlinear Mathematical Physics | 2012年 / 19卷
关键词
Schrödinger—Newton equations; calculus of variations; Noether’s theorem; 02.30.Jr; 02.30.Xx; 11.30.-j;
D O I
暂无
中图分类号
学科分类号
摘要
In this Letter a first-order Lagrangian for the Schrödinger—Newton equations is derived by modifying a second-order Lagrangian proposed by Christian [Exactly soluble sector of quantum gravity, Phys. Rev. D56(8) (1997) 4844–4877]. Then Noether’s theorem is applied to the Lie point symmetries determined by Robertshaw and Tod [Lie point symmetries and an approximate solution for the Schrödinger—Newton equations, Nonlinearity19(7) (2006) 1507–1514] in order to find conservation laws of the Schrödinger—Newton equations.
引用
收藏
页码:292 / 299
页数:7
相关论文
共 50 条
[21]   Conservation Laws of Fractional Classical Fields [J].
Muslih S.I. ;
Agrawal O.P. ;
Rabei E. .
International Journal of Applied and Computational Mathematics, 2023, 9 (5)
[22]   A COMPARISON OF CONSERVATION LAWS OF THE BOUSSINESQ SYSTEM [J].
Saberi, Elaheh ;
Hejazi, S. Reza .
KRAGUJEVAC JOURNAL OF MATHEMATICS, 2019, 43 (02) :173-200
[23]   BOUNDARY CONDITIONS FOR INFINITE CONSERVATION LAWS [J].
Rosenhaus, V. ;
Bruzon, M. S. ;
Gandarias, M. L. .
REPORTS ON MATHEMATICAL PHYSICS, 2016, 78 (03) :345-370
[24]   Fractional conservation laws in optimal control theory [J].
Gastão S. F. Frederico ;
Delfim F. M. Torres .
Nonlinear Dynamics, 2008, 53 :215-222
[25]   Conservation laws of linear elasticity in stress formulations [J].
Li, SF ;
Gupta, A ;
Markenscoff, X .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2053) :99-116
[26]   Conservation laws for Birkhoffian systems of Herglotz type [J].
Zhang, Yi ;
Tian, Xue .
CHINESE PHYSICS B, 2018, 27 (09)
[27]   Discrete Field Theory: Symmetries and Conservation Laws [J].
Skopenkov, M. .
MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2023, 26 (03)
[28]   Continuous symmetries and conservation laws in chiral media [J].
Crimin, Frances ;
Mackinnon, Neel ;
Gotte, Jorg B. ;
Barnett, Stephen M. .
COMPLEX LIGHT AND OPTICAL FORCES XIV, 2020, 11297
[29]   Discrete Field Theory: Symmetries and Conservation Laws [J].
M. Skopenkov .
Mathematical Physics, Analysis and Geometry, 2023, 26
[30]   Conservation laws for invariant functionals containing compositions [J].
Frederico, Gastao S. F. ;
Torres, Delfim F. M. .
APPLICABLE ANALYSIS, 2007, 86 (09) :1117-1126