Repdigits base b as products of two Pell numbers or Pell–Lucas numbers

被引:0
作者
Fatih Erduvan
Refik Keskin
Zafer Şiar
机构
[1] Sakarya University,Department of Mathematics
[2] Bingöl University,Department of Mathematics
来源
Boletín de la Sociedad Matemática Mexicana | 2021年 / 27卷
关键词
Pell numbers; Pell–Lucas numbers; Repdigit; Diophantine equations; linear forms in logarithms; 11B39; 11J86; 11D61;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we determine all repdigits in base b for 2≤b≤10,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\le b\le 10,$$\end{document} which are products of two Pell numbers or Pell–Lucas numbers. It is shown that the largest Pell number which is a base b-repdigit is P6=70=(77)9=7+7·9.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{6}=70=(77)_{9} =7+7\cdot 9.$$\end{document} Also, we give the result that the equations PmPn+1=bk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{m}P_{n}+1=b^{k}$$\end{document} and QmQn+1=bk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{m}Q_{n}+1=b^{k}$$\end{document} have no solutions for n≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 5$$\end{document} and n≥1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 1,$$\end{document} respectively, where 1≤m≤n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le m\le n$$\end{document}.
引用
收藏
相关论文
共 30 条
  • [1] Luca F(2000)Fibonacci and Lucas numbers with only one distinct digit Portugal. Math. 57 243-254
  • [2] Faye B(2015)Pell and Pell–Lucas numbers with only one distinct digit Ann. Math. Inform. 45 55-60
  • [3] Luca F(2019)Repdigits as Products of two Pell or Pell–Lucas Numbers Acta Mathematica Universitatis Comenianae 88 247-256
  • [4] Şiar Z(2012)On repdigits as product of consecutive Fibonacci numbers Rend. Istit. Mat. Univ. Trieste 44 393-397
  • [5] Erduvan F(2018)On repdigits as product of consecutive Lucas numbers Notes Number Theory Discrete Math. 24 95-102
  • [6] Keskin R(2020)Repdigits as products of two Fibonacci or Lucas numbers Proc. Indian Acad. Sci. Math. Sci. 130 28-10
  • [7] Marques D(2020)Repdigits as product of Fibonacci and Tribonacci numbers Mathematics 8 1720-180
  • [8] Togbe A(2021)Repdigits as product of terms of k-Bonacci sequences Mathematics 9 682-1018
  • [9] Irmak N(2020)Tribonacci numbers that are concatenations of two repdigits Revista de la Real Academia de Ciencias Exactas. Físicas y Naturales. Serie A. Matemáticas 114 1-100
  • [10] Togbe A(2000)An Explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers II Izv. Ross. Akad. Nauk Ser. Mat. 64 125-306