Symbolic solution of nonhomogeneous linear ordinary differential equations in terms of power series

被引:0
作者
A. A. Ryabenko
机构
[1] Russian Academy of Sciences,Computing Center
来源
Programming and Computer Software | 2006年 / 32卷
关键词
Differential Equation; Operating System; Artificial Intelligence; Rational Function; Ordinary Differential Equation;
D O I
暂无
中图分类号
学科分类号
摘要
For a nonhomogeneous linear ordinary differential equation Ly(x) = f(x) with polynomial coefficients and a holonomic right-hand side, a set of points x = a is found where a power series solution \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$y(x) = \sum\nolimits_{n = 0}^\infty {c_n (x - a)} ^n $$ \end{document} with hypergeometric coefficients exists (starting from some number, the ratio cn + 1/cn is a rational function of n).
引用
收藏
页码:120 / 122
页数:2
相关论文
共 4 条
[1]  
Abramov S.A.(2000)Special Formal Series Solutions of Linear Operator Equations Discrete Math. 210 3-25
[2]  
Petkovšek M.(1992)Hypergeometric Solutions of Linear Recurrences with Polynomial Coefficients Symbolic Computation 14 243-264
[3]  
Ryabenko A.(undefined)undefined undefined undefined undefined-undefined
[4]  
Petkovšek M.(undefined)undefined undefined undefined undefined-undefined