Equivariant Spectral Triples for Homogeneous Spaces of the Compact Quantum Group Uq(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_q(2)$$\end{document}

被引:0
作者
Satyajit Guin
Bipul Saurabh
机构
[1] Indian Institute of Technology,Department of Mathematics and Statistics
[2] Indian Institute of Technology,undefined
[3] Gandhinagar,undefined
关键词
Quantum unitary group; Homogeneous extension; Spectral triples; GNS space; 58B34; 58B32; 19K33;
D O I
10.1007/s11040-022-09432-7
中图分类号
学科分类号
摘要
In this article, we study homogeneous spaces Uq(2)/ϕT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_q(2)/_\phi \mathbb {T}$$\end{document} and Uq(2)/ψT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_q(2)/_\psi \mathbb {T}$$\end{document} of the compact quantum group Uq(2),q∈C\{0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_q(2),\,q\in {\mathbb {C}}\setminus \{0\}$$\end{document}. The homogeneous space Uq(2)/ϕT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_q(2)/_\phi \mathbb {T}$$\end{document} is shown to be the braided quantum group SUq(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SU_q(2)$$\end{document}. The homogeneous space Uq(2)/ψT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_q(2)/_\psi \mathbb {T}$$\end{document} is established as a universal C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebra given by a finite set of generators and relations. Its K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {K}}$$\end{document}-groups are computed and two families of finitely summable odd spectral triples, one is Uq(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_q(2)$$\end{document}-equivariant and the other is T2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}^2$$\end{document}-equivariant, are constructed. Using the index pairing, it is shown that the induced Fredholm modules for these families of spectral triples give each element in the K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {K}}$$\end{document}-homology group K1(C(Uq(2)/ψT))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K^1(C(U_q(2)/_\psi \mathbb {T}))$$\end{document}.
引用
收藏
相关论文
共 38 条
[1]  
Chakraborty PS(2003)Equivariant spectral triples on the quantum K-Theory 28 107-126
[2]  
Pal A(2008) group J. Reine Angew. Math. 623 25-42
[3]  
Chakraborty PS(2002)Characterization of Commun. Math. Phys. 230 539-579
[4]  
Pal A(2005)-equivariant spectral triples for the odd dimensional quantum spheres Commun. Math. Phys. 259 729-759
[5]  
Connes A(2007)Noncommutative finite-dimensional manifolds. I. Spherical manifolds and related examples J. Noncommut. Geom. 1 213-239
[6]  
Dubois-Violette M(2010)The Dirac operator on Commun. Math. Phys. 295 731-790
[7]  
Dabrowski L(2021)Dirac operators on all Podleś quantum spheres Int. J. Math. 32 2150020-1625
[8]  
Landi G(2016)Dirac operators on quantum projective spaces J. Noncommut. Geom. 10 1611-888
[9]  
Sitarz A(2016)Representations and classification of the compact quantum groups J. Noncommut. Geom. 10 859-20
[10]  
Suijlekom WS(2010) for complex deformation parameters J. Reine Angew. Math. 641 1-780