Projective Completions of Jordan Pairs, Part II: Manifold Structures and Symmetric Spaces

被引:0
作者
Wolfgang Bertram
Karl-Hermann Neeb
机构
[1] Université Nancy I,Institut Elie Cartan, Faculté des Sciences
[2] Technische Universität Darmstadt,undefined
来源
Geometriae Dedicata | 2005年 / 112卷
关键词
Jordan algebra; Jordan pair; Jordan triple; symmetric space; conformal completion; projective completion; Lie group;
D O I
暂无
中图分类号
学科分类号
摘要
We define symmetric spaces in arbitrary dimension and over arbitrary non-discrete topological fields \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{K}$$\end{document}, and we construct manifolds and symmetric spaces associated to topological continuous quasi-inverse Jordan pairs and -triple systems. This class of spaces, called smooth generalized projective geometries, generalizes the well-known (finite or infinite-dimensional) bounded symmetric domains as well as their ‘compact-like’ duals. An interpretation of such geometries as models of Quantum Mechanics is proposed, and particular attention is paid to geometries that might be considered as ‘standard models’ – they are associated to associative continuous inverse algebras and to Jordan algebras of hermitian elements in such an algebra.
引用
收藏
页码:73 / 113
页数:40
相关论文
共 30 条
[1]  
Bertram W.(1996)On some causal and conformal groups J. Lie Theory. 6 215-247
[2]  
Bertram W.(2002)Generalized projective geometries: general theory and equivalence with Jordan structures Adv. Geom. 2 329-369
[3]  
Bertram W.(2003)The geometry of null-systems, Jordan algebras and von Staudt’s theorem Ann. Inst. Fourier. 53 193-225
[4]  
Bertram W.(2004)Differentiable calculus over general base fields and rings Expo. Math. 22 213-282
[5]  
Glöckner H.(2004)Projective completions of Jordan pairs. Part I. The generalized projective geometry of a Lie algebra J. Algebra. 277 474-519
[6]  
Neeb K.-H.(2001)The connected components of the projective line over a ring Adv. Geom. 1 107-117
[7]  
Bertram W.(1990)Principe d’Oka, Invent. Math. 101 261-333
[8]  
Neeb K.-H.(2003)-theorie et systèmes dynamiques non-commutatifs J. Geom. Phys. 45 267-284
[9]  
Blunck A.(1989)The pure state space of quantum mechanics as hermitian symmetric space Quart. J. Math. Oxford. (2) 40 161-195
[10]  
Havlicek H.(2002)Automorphisms of Banach manifolds associated with the KP-equation Studia Math. 153 147-177