Resonant radial oscillations of an inhomogeneous gas in the frustum of a cone

被引:0
|
作者
D. E. Amundsen
M. P. Mortell
B. R. Seymour
机构
[1] Carleton University,School of Mathematics and Statistics
[2] University College Cork,Department of Applied Mathematics
[3] University of British Columbia,Department of Mathematics
来源
Zeitschrift für angewandte Mathematik und Physik | 2015年 / 66卷
关键词
Resonance; Spherical geometry; Geometrical acoustics limit; Shocks; Stratification; Hard (soft) spring; Primary 76Nxx; Secondary 74J30; 34F15;
D O I
暂无
中图分类号
学科分类号
摘要
The effects of nonlinearity, geometry and inhomogeneity on the resonant motion of a gas contained in the frustum of a cone are investigated. The motion is radially symmetric, and the inhomogeneity arises from a body force term. We show how to construct a variable density, containing an arbitrary parameter μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu}$$\end{document} , that can be used to approximate a given density ρ(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rho(r)}$$\end{document} . The approximate density allows us to solve exactly the eigenvalue equation associated with linear theory. This is the basis for continuous resonant solutions. There is a critical value of the parameter μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu}$$\end{document} which separates when the system behaves like a hard or soft spring. When motions are shocked, they may be represented by the superposition of oppositely traveling modulated simple waves. In all cases, approximate solutions are compared with exact numerical solutions.
引用
收藏
页码:2647 / 2663
页数:16
相关论文
共 50 条
  • [21] Resonant Oscillations of Gas in Tubes with Different Tips
    Gubaidullin, D. A.
    Zaripov, R. G.
    Tkachenko, L. A.
    Shaidullin, L. R.
    Fadeev, S. A.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (05) : 1638 - 1643
  • [22] Resonant Oscillations of Gas in Tubes with Different Tips
    D. A. Gubaidullin
    R. G. Zaripov
    L. A. Tkachenko
    L. R. Shaidullin
    S. A. Fadeev
    Lobachevskii Journal of Mathematics, 2023, 44 : 1638 - 1643
  • [23] Investigation of Gas Oscillations in the Closed Tube with a Cone Tip
    Gubaidullin, D. A.
    Tkachenko, L. A.
    Shaidullin, L. R.
    Fadeev, S. A.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (05) : 1116 - 1121
  • [24] Investigation of Gas Oscillations in the Closed Tube with a Cone Tip
    D. A. Gubaidullin
    L. A. Tkachenko
    L. R. Shaidullin
    S. A. Fadeev
    Lobachevskii Journal of Mathematics, 2022, 43 : 1116 - 1121
  • [25] RESONANT OSCILLATIONS OF A GAS IN AN OPEN-ENDED TUBE
    CHESTER, W
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1981, 377 (1771): : 449 - 467
  • [26] LARGE-AMPLITUDE RADIAL OSCILLATIONS OF INHOMOGENEOUS TUBES OF ARBITRARY WALL THICKNESS
    ERTEPINAR, A
    GURKOK, A
    JOURNAL OF SOUND AND VIBRATION, 1981, 77 (04) : 527 - 533
  • [27] Radial oscillations of gas bubbles in liquid with an availability of a fuel component in gas
    Zolovkin, N.A.
    Khabeev, N.S.
    Izvestiya Akademii Nauk. Mekhanika Zhidkosti I Gaza, 1993, (01): : 103 - 109
  • [28] EFFECTS OF ADSORBED FILMS ON GAS BUBBLE RADIAL OSCILLATIONS
    GLAZMAN, RE
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1983, 74 (03): : 980 - 986
  • [30] MINIMUM-DRAG CONE FRUSTUM AT HYPERSONIC SPEEDS
    TRUITT, RW
    JOURNAL OF THE AEROSPACE SCIENCES, 1958, 25 (08): : 529 - 530