Sustained bacterial N2O reduction at acidic pH

被引:3
|
作者
He, Guang [1 ,2 ]
Chen, Gao [2 ,3 ]
Xie, Yongchao [2 ,7 ]
Swift, Cynthia M. [2 ,3 ]
Ramirez, Diana [4 ,5 ]
Cha, Gyuhyon [6 ]
Konstantinidis, Konstantinos T. [6 ]
Radosevich, Mark [1 ]
Loffler, Frank E. [1 ,2 ,3 ,4 ,5 ]
机构
[1] Univ Tennessee, Dept Biosyst Engn & Soil Sci, Knoxville, TN 37996 USA
[2] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA
[3] Univ Tennessee, Ctr Environm Biotechnol, Knoxville, TN 37996 USA
[4] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA
[5] Biosci Div, Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[6] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA
[7] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
NITROUS-OXIDE N2O; 16S RIBOSOMAL-RNA; SOIL; DENITRIFICATION; ANNOTATION; EMISSION; FLUXES; CH4; ACCUMULATION; DEHALOGENASE;
D O I
10.1038/s41467-024-48236-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nitrous oxide (N2O) is a climate-active gas with emissions predicted to increase due to agricultural intensification. Microbial reduction of N2O to dinitrogen (N-2) is the major consumption process but microbial N2O reduction under acidic conditions is considered negligible, albeit strongly acidic soils harbor nosZ genes encoding N2O reductase. Here, we study a co-culture derived from acidic tropical forest soil that reduces N2O at pH 4.5. The co-culture exhibits bimodal growth with a Serratia sp. fermenting pyruvate followed by hydrogenotrophic N2O reduction by a Desulfosporosinus sp. Integrated omics and physiological characterization revealed interspecies nutritional interactions, with the pyruvate fermenting Serratia sp. supplying amino acids as essential growth factors to the N2O-reducing Desulfosporosinus sp. Thus, we demonstrate growth-linked N2O reduction between pH 4.5 and 6, highlighting microbial N2O reduction potential in acidic soils.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Electrochemical Reduction of N2O with a Molecular Copper Catalyst
    Martinez, Jorge L.
    Schneider, Joseph E.
    Anferov, Sophie W.
    Anderson, John S.
    ACS CATALYSIS, 2023, 13 (19) : 12673 - 12680
  • [32] Reduction of N2O emission by introduction of precision fertilisation
    Kasper, GJ
    Holshof, G
    van den Pol-Van Dasselaar, A
    NON-C02 GREENHOUSE GASES: SCIENTIFIC UNDERSTANDING, CONTROL OPTIONS AND POLICY ASPECTS, 2002, : 495 - 496
  • [33] Do increasingly depleted δ15N values of atmospheric N2O indicate a decline in soil N2O reduction?
    Franz Conen
    Albrecht Neftel
    Biogeochemistry, 2007, 82 : 321 - 326
  • [34] Do increasingly depleted δ15N values of atmospheric N2O indicate a decline in soil N2O reduction?
    Conen, Franz
    Neftel, Albrecht
    BIOGEOCHEMISTRY, 2007, 82 (03) : 321 - 326
  • [35] Modelling the dynamics of the N2O reduction on iron oxide
    Randall, H
    Doepper, R
    Renken, A
    CATALYSIS TODAY, 1997, 38 (01) : 13 - 22
  • [36] Theoretical research on heterogeneous reduction of N2O by char
    Gao, Zhengyang
    Yang, Weijie
    Ding, Xunlei
    Ding, Yi
    Yan, Weiping
    APPLIED THERMAL ENGINEERING, 2017, 126 : 28 - 36
  • [37] Isotopologue enrichment factors of N2O reduction in soils
    Well, R.
    Flessa, H.
    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 2009, 23 (18) : 2996 - 3002
  • [38] Decomposition and reduction of N2O over copper catalysts
    Dandekar, A
    Vannice, MA
    APPLIED CATALYSIS B-ENVIRONMENTAL, 1999, 22 (03) : 179 - 200
  • [39] Reduction of N2O with hydrosilanes catalysed by RuSNS nanoparticles
    Molinillo, Pablo
    Lacroix, Bertrand
    Vattier, Florencia
    Rendon, Nuria
    Suarez, Andres
    Lara, Patricia
    CHEMICAL COMMUNICATIONS, 2022, 58 (51) : 7176 - 7179
  • [40] Modeling of chemical reactions in afterburning for the reduction of N2O
    Gustavsson, L
    Glarborg, P
    Leckner, B
    COMBUSTION AND FLAME, 1996, 106 (03) : 345 - 358