Sustained bacterial N2O reduction at acidic pH

被引:3
|
作者
He, Guang [1 ,2 ]
Chen, Gao [2 ,3 ]
Xie, Yongchao [2 ,7 ]
Swift, Cynthia M. [2 ,3 ]
Ramirez, Diana [4 ,5 ]
Cha, Gyuhyon [6 ]
Konstantinidis, Konstantinos T. [6 ]
Radosevich, Mark [1 ]
Loffler, Frank E. [1 ,2 ,3 ,4 ,5 ]
机构
[1] Univ Tennessee, Dept Biosyst Engn & Soil Sci, Knoxville, TN 37996 USA
[2] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA
[3] Univ Tennessee, Ctr Environm Biotechnol, Knoxville, TN 37996 USA
[4] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA
[5] Biosci Div, Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[6] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA
[7] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
NITROUS-OXIDE N2O; 16S RIBOSOMAL-RNA; SOIL; DENITRIFICATION; ANNOTATION; EMISSION; FLUXES; CH4; ACCUMULATION; DEHALOGENASE;
D O I
10.1038/s41467-024-48236-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nitrous oxide (N2O) is a climate-active gas with emissions predicted to increase due to agricultural intensification. Microbial reduction of N2O to dinitrogen (N-2) is the major consumption process but microbial N2O reduction under acidic conditions is considered negligible, albeit strongly acidic soils harbor nosZ genes encoding N2O reductase. Here, we study a co-culture derived from acidic tropical forest soil that reduces N2O at pH 4.5. The co-culture exhibits bimodal growth with a Serratia sp. fermenting pyruvate followed by hydrogenotrophic N2O reduction by a Desulfosporosinus sp. Integrated omics and physiological characterization revealed interspecies nutritional interactions, with the pyruvate fermenting Serratia sp. supplying amino acids as essential growth factors to the N2O-reducing Desulfosporosinus sp. Thus, we demonstrate growth-linked N2O reduction between pH 4.5 and 6, highlighting microbial N2O reduction potential in acidic soils.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] N2O isotope approaches for source partitioning of N2O production and estimation of N2O reduction - validation with the 15N gas-flux method in laboratory and field studies
    Lewicka-Szczebak, Dominika
    Lewicki, Maciej Piotr
    Well, Reinhard
    BIOGEOSCIENCES, 2020, 17 (22) : 5513 - 5537
  • [32] Temporal in situ dynamics of N2O reductase activity as affected by nitrogen fertilization and implications for the N2O/(N2O + N2) product ratio and N2O mitigation
    Shuping Qin
    Keren Ding
    Tim J. Clough
    Chunsheng Hu
    Jiafa Luo
    Biology and Fertility of Soils, 2017, 53 : 723 - 727
  • [33] Transcriptional and environmental control of bacterial denitrification and N2O emissions
    Gaimster, Hannah
    Alston, Mark
    Richardson, David J.
    Gates, Andrew J.
    Rowley, Gary
    FEMS MICROBIOLOGY LETTERS, 2018, 365 (05)
  • [34] Improving N2O emission estimates with the global N2O database
    Dorich, Christopher D.
    Conant, Richard T.
    Albanito, Fabrizio
    Butterbach-Bahl, Klaus
    Grace, Peter
    Scheer, Clemens
    Snow, Val O.
    Vogeler, Iris
    van der Weerden, Tony J.
    CURRENT OPINION IN ENVIRONMENTAL SUSTAINABILITY, 2020, 47 : 13 - 20
  • [35] Effects of dicyandiamide and dolomite application on N2O emission from an acidic soil
    Shaaban, Muhammad
    Wu, Yupeng
    Peng, Qi-an
    Lin, Shan
    Mo, Yongliang
    Wu, Lei
    Hu, Ronggui
    Zhou, Wei
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2016, 23 (07) : 6334 - 6342
  • [36] Mitigation of N2O emissions from urine treated acidic soils by liming
    Shaaban, Muhammad
    Hu, Ronggui
    Wu, Yupeng
    Younas, Aneela
    Xu, Xiangyu
    Sun, Zheng
    Jiang, Yanbin
    Lin, Shan
    ENVIRONMENTAL POLLUTION, 2019, 255
  • [37] Impacts of application of calcium cyanamide and the consequent increase in soil pH on N2O emissions and soil bacterial community compositions
    Suzuki, Kazuki
    Kashiwa, Naoya
    Nomura, Kota
    Asiloglu, Rasit
    Harada, Naoki
    BIOLOGY AND FERTILITY OF SOILS, 2021, 57 (02) : 269 - 279
  • [38] The Effects of pH Change through Liming on Soil N2O Emissions
    Shaaban, Muhammad
    Wu, Yupeng
    Wu, Lei
    Hu, Ronggui
    Younas, Aneela
    Nunez-Delgado, Avelino
    Xu, Peng
    Sun, Zheng
    Lin, Shan
    Xu, Xiangyu
    Jiang, Yanbin
    PROCESSES, 2020, 8 (06) : 1 - 13
  • [39] On the potential of δ18O and δ15N to assess N2O reduction to N2 in soil
    Decock, C.
    Six, J.
    EUROPEAN JOURNAL OF SOIL SCIENCE, 2013, 64 (05) : 610 - 620
  • [40] Effects of plants on N2O emission in freshwater marsh ecosystem
    Lu, Yan
    Xu, Hong-wen
    Song, Chang-chun
    JOURNAL OF FOOD AGRICULTURE & ENVIRONMENT, 2012, 10 (01): : 662 - 666