Sustained bacterial N2O reduction at acidic pH

被引:3
|
作者
He, Guang [1 ,2 ]
Chen, Gao [2 ,3 ]
Xie, Yongchao [2 ,7 ]
Swift, Cynthia M. [2 ,3 ]
Ramirez, Diana [4 ,5 ]
Cha, Gyuhyon [6 ]
Konstantinidis, Konstantinos T. [6 ]
Radosevich, Mark [1 ]
Loffler, Frank E. [1 ,2 ,3 ,4 ,5 ]
机构
[1] Univ Tennessee, Dept Biosyst Engn & Soil Sci, Knoxville, TN 37996 USA
[2] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA
[3] Univ Tennessee, Ctr Environm Biotechnol, Knoxville, TN 37996 USA
[4] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA
[5] Biosci Div, Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[6] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA
[7] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
NITROUS-OXIDE N2O; 16S RIBOSOMAL-RNA; SOIL; DENITRIFICATION; ANNOTATION; EMISSION; FLUXES; CH4; ACCUMULATION; DEHALOGENASE;
D O I
10.1038/s41467-024-48236-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nitrous oxide (N2O) is a climate-active gas with emissions predicted to increase due to agricultural intensification. Microbial reduction of N2O to dinitrogen (N-2) is the major consumption process but microbial N2O reduction under acidic conditions is considered negligible, albeit strongly acidic soils harbor nosZ genes encoding N2O reductase. Here, we study a co-culture derived from acidic tropical forest soil that reduces N2O at pH 4.5. The co-culture exhibits bimodal growth with a Serratia sp. fermenting pyruvate followed by hydrogenotrophic N2O reduction by a Desulfosporosinus sp. Integrated omics and physiological characterization revealed interspecies nutritional interactions, with the pyruvate fermenting Serratia sp. supplying amino acids as essential growth factors to the N2O-reducing Desulfosporosinus sp. Thus, we demonstrate growth-linked N2O reduction between pH 4.5 and 6, highlighting microbial N2O reduction potential in acidic soils.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] APPEARANCE OF N2O IN CATALYTIC REDUCTION OF NO BY CO
    SHELEF, M
    OTTO, K
    JOURNAL OF CATALYSIS, 1968, 10 (04) : 408 - &
  • [22] REDUCTION OF N2O BY BIOLOGICAL N2-FIXING SYSTEMS
    HARDY, RWF
    KNIGHT, E
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1966, 23 (04) : 409 - &
  • [23] Active N2O emission from bacterial microbiota of Andisol farmland and characterization of some N2O emitters
    Takeda, Hisahaya
    Takahashi, Naoki
    Hatano, Ryusuke
    Hashidoko, Yasuyuki
    JOURNAL OF BASIC MICROBIOLOGY, 2012, 52 (04) : 477 - 486
  • [24] Decomposition of N2O by microwave discharge of N2O/He or N2O/Ar mixtures
    Tsuji, M
    Tanoue, T
    Kumagae, J
    Nakano, K
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2001, 40 (12): : 7091 - 7097
  • [25] Effects of copper on nitrous oxide (N2O) reduction in denitrifiers and N2O emissions from agricultural soils
    Weishou Shen
    Huaiwen Xue
    Nan Gao
    Yutaka Shiratori
    Takehiro Kamiya
    Toru Fujiwara
    Kazuo Isobe
    Keishi Senoo
    Biology and Fertility of Soils, 2020, 56 : 39 - 51
  • [26] Effects of copper on nitrous oxide (N2O) reduction in denitrifiers and N2O emissions from agricultural soils
    Shen, Weishou
    Xue, Huaiwen
    Gao, Nan
    Shiratori, Yutaka
    Kamiya, Takehiro
    Fujiwara, Toru
    Isobe, Kazuo
    Senoo, Keishi
    BIOLOGY AND FERTILITY OF SOILS, 2020, 56 (01) : 39 - 51
  • [27] N2O ACCUMULATION AND INHIBITION OF N2O REDUCTION BY DENITRIFYING PSEUDOMONAS SP 220A IN THE PRESENCE OF OXYGEN
    WATAHIKI, M
    HATA, S
    AIDA, T
    AGRICULTURAL AND BIOLOGICAL CHEMISTRY, 1983, 47 (09): : 1991 - 1996
  • [28] N2O dissolution with Couette-Taylor flow mixer for the effective electrochemical N2O reduction reaction
    Kwon, Oh Joong (ojkwon@inu.ac.kr), 1600, Elsevier B.V., Netherlands (335):
  • [29] N2O dissolution with Couette-Taylor flow mixer for the effective electrochemical N2O reduction reaction
    Baek, Seungyeon
    Kim, Kwang Hwan
    Choi, Insoo
    Kwon, Oh Joong
    Kim, Jae Jeong
    CHEMICAL ENGINEERING JOURNAL, 2018, 335 : 915 - 920
  • [30] Theoretical Study on CO Participated N2O Reduction
    Zeng, Tianhong
    Shen, Jun
    Guo, Yun
    Wang, Sha
    Chen, Bin
    Deng, Shengxiang
    Zhang, Hai
    COMBUSTION SCIENCE AND TECHNOLOGY, 2024, 196 (14) : 2422 - 2438