Commuting quantum matrix models

被引:0
作者
Veselin G. Filev
Denjoe O’Connor
机构
[1] Dublin Institute for Advanced Studies,School of Theoretical Physics
来源
Journal of High Energy Physics | / 2015卷
关键词
Matrix Models; 1/N Expansion;
D O I
暂无
中图分类号
学科分类号
摘要
We study a quantum system of p commuting matrices and find that such a quantum system requires an explicit curvature dependent potential in its Lagrangian for the system to have a finite energy ground state. In contrast it is possible to avoid such curvature dependence in the Hamiltonian. We study the eigenvalue distribution for such systems in the large matrix size limit. A critical rôle is played by p = 4. For p ≥ 4 the competition between eigenvalue repulsion and the attractive potential forces the eigenvalues to form a sharp spherical shell.
引用
收藏
相关论文
共 41 条
[1]  
Brézin E(1978)Planar Diagrams Commun. Math. Phys. 59 35-undefined
[2]  
Itzykson C(1982)On the Phase Structure of Large-N Matrix Models and Gauge Models Phys. Lett. B 108 407-undefined
[3]  
Parisi G(1997)M theory as a matrix model: A Conjecture Phys. Rev. D 55 5112-undefined
[4]  
Zuber JB(1995)The eleven-dimensional supermembrane revisited Phys. Lett. B 350 184-undefined
[5]  
Shimamune Y(2003)Strings in flat space and pp waves from AIP Conf. Proc. 646 3-undefined
[6]  
Banks T(2008) Super Yang Mills JHEP 11 043-undefined
[7]  
Fischler W(2014)Fractional M2-branes Prog. Theor. Exp. Phys. 2014 093B01-undefined
[8]  
Shenker SH(1988)Membranes from monopole operators in ABJM theory: Large angular momentum and M-theoretic AdS Nucl. Phys. B 305 545-undefined
[9]  
Susskind L(2006)/CF T JHEP 01 125-undefined
[10]  
Townsend PK(1957)On the Quantum Mechanics of Supermembranes Rev. Mod. Phys. 29 377-undefined