Let Q(x) be a nonnegative definite, symmetric matrix such that Q(x)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sqrt {Q\left( x \right)} $$\end{document} is Lipschitz continuous. Given a real-valued function b(x) and a weak solution u(x) of div(Q∇u) = b, we find sufficient conditions in order that Q∇u\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sqrt Q \nabla u$$\end{document} has some first order smoothness. Specifically, if Ω is a bounded open set in Rn, we study when the components of Q∇u\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sqrt Q \nabla u$$\end{document} belong to the first order Sobolev space WQ1,2(Ω) defined by Sawyer and Wheeden. Alternately, we study when each of n first order Lipschitz vector field derivatives Xiu has some first order smoothness if u is a weak solution in Ω of Σi=1nXi′Xiu + b = 0. We do not assume that {Xi} is a Hörmander collection of vector fields in Ω. The results signal ones for more general equations.