Smoothness of the gradient of weak solutions of degenerate linear equations

被引:0
作者
Richard L. Wheeden
机构
[1] Rutgers University,Department of Mathematics
来源
Acta Mathematica Sinica, English Series | 2018年 / 34卷
关键词
Degenerate elliptic differential equations; degenerate quadratic forms; weak solutions; second order regularity; 35J70; 35B65; 35D30;
D O I
暂无
中图分类号
学科分类号
摘要
Let Q(x) be a nonnegative definite, symmetric matrix such that Q(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt {Q\left( x \right)} $$\end{document} is Lipschitz continuous. Given a real-valued function b(x) and a weak solution u(x) of div(Q∇u) = b, we find sufficient conditions in order that Q∇u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt Q \nabla u$$\end{document} has some first order smoothness. Specifically, if Ω is a bounded open set in Rn, we study when the components of Q∇u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt Q \nabla u$$\end{document} belong to the first order Sobolev space WQ1,2(Ω) defined by Sawyer and Wheeden. Alternately, we study when each of n first order Lipschitz vector field derivatives Xiu has some first order smoothness if u is a weak solution in Ω of Σi=1nXi′Xiu + b = 0. We do not assume that {Xi} is a Hörmander collection of vector fields in Ω. The results signal ones for more general equations.
引用
收藏
页码:42 / 62
页数:20
相关论文
共 7 条
  • [1] Franchi B.(1996)Meyers–Serrin type theorems and relaxation of variational integrals depending on vector fields Houston J. Math. 22 859-889
  • [2] Serapioni R. S.(1996)Isoperimetric and Sobolev inequalities for Carnot–Carathéodory spaces and existence of minimal surfaces Comm. Pure Appl. Math. 49 1081-1144
  • [3] Cassano F.(2010)Degenerate Sobolev spaces and regularity of subelliptic equations Trans. Amer. Math. Soc. 362 1869-1906
  • [4] Garofalo N.(undefined)undefined undefined undefined undefined-undefined
  • [5] Nhieu D. M.(undefined)undefined undefined undefined undefined-undefined
  • [6] Sawyer E. T.(undefined)undefined undefined undefined undefined-undefined
  • [7] Wheeden R. L.(undefined)undefined undefined undefined undefined-undefined