One-loop effective action and emergent gravity on quantum spaces in the IKKT matrix model

被引:0
作者
Harold C. Steinacker
机构
[1] University of Vienna,Faculty of Physics
来源
Journal of High Energy Physics | / 2023卷
关键词
M(atrix) Theories; Models of Quantum Gravity; Non-Commutative Geometry;
D O I
暂无
中图分类号
学科分类号
摘要
A detailed derivation of 3 + 1 dimensional induced or emergent gravity in the IKKT matrix model at one loop is given, as announced in [1]. The mechanism requires a brane configuration with structure M3,1×K⊂ℝ9,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{M}}^{3,1}\times \mathcal{K}\subset {\mathbb{R}}^{9,1} $$\end{document}, where M3,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{M}}^{3,1} $$\end{document} is the noncommutative space-time brane, and K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{K} $$\end{document} are compact fuzzy extra dimensions embedded in target space. The 3+1-dimensional Einstein-Hilbert action then arises in the one loop effective action of the maximally supersymmetric IIB or IKKT matrix model, with effective Newton constant determined by the Kaluza-Klein scale of K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{K} $$\end{document}. At weak coupling, all physical modes are confined to the brane, leading to 3 + 1-dimensional low-energy physics. The Einstein-Hilbert action can be interpreted as interaction of K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{K} $$\end{document} with the space-time brane via IIB supergravity. The vacuum energy does not act as cosmological constant, but stabilizes the brane structure at one loop.
引用
收藏
相关论文
共 36 条
[1]  
Iso S(2000) = 4 Nucl. Phys. B 576 375-undefined
[2]  
Kawai H(2016) 1 Nucl. Phys. B 910 346-undefined
[3]  
Kitazawa Y(2022) = 4 JHEP 06 136-undefined
[4]  
Steinacker HC(2006)undefined JHEP 09 026-undefined
[5]  
Steinacker HC(2015)undefined JHEP 02 027-undefined
[6]  
Tekel J(1998)undefined JHEP 02 003-undefined
[7]  
Aschieri P(2003)undefined Phys. Rept. 388 279-undefined
[8]  
Grammatikopoulos T(2011)undefined JHEP 03 002-undefined
[9]  
Steinacker H(1997)undefined Nucl. Phys. B 498 467-undefined
[10]  
Zoupanos G(2020)undefined JHEP 04 111-undefined