Physiological and gene expression analysis of extreme chickpea (Cicer arietinum L.) genotypes in response to salinity stress

被引:0
|
作者
Mohammad Arefian
Saeid Malekzadeh Shafaroudi
机构
[1] Ferdowsi University of Mashhad,Plant Biotechnology and Breeding Department, College of Agriculture
[2] Ferdowsi University of Mashhad,Plant Biotechnology and Breeding Department, College of Agriculture
来源
Acta Physiologiae Plantarum | 2015年 / 37卷
关键词
Chickpea; Gene expression; Proline; Real-time PCR; RT-PCR; Salinity;
D O I
暂无
中图分类号
学科分类号
摘要
Salinity is a major abiotic stress, which reduces productivity of a broad range of crops, especially legumes. This study provides a comparative overview of physiological responses and expression patterns of critical genes in chickpea genotypes during five time courses of NaCl treatment. Considering lipid peroxidation (MDA), electrolyte leakage, proline content and relative water content which are considered to be direct indicators of salinity tolerance, the Flip 97-43c (T1) and Flip 97-196c (S2) genotypes displayed, respectively, maximum and minimum maintenance of cell membrane integrity, osmolyte accumulation and water retention capacity during salinity stress. Relative gene expression analysis of extreme genotypes was carried out using semi-quantitative RT-PCR and the up- and down regulation of the genes was confirmed by real-time qPCR for nine putative salinity responsive genes. However, up-regulation of salinity responsive genes and sequences including late embryogenesis abundant (CapLEA-1), H1 and 219 cDNA sequences, Nonspecific LTP precursor (LTP), Cu/Zn superoxide dismutase (Cu/Zn SOD) and protein kinase (PK) in tolerant genotype was significantly more than control (no-salinity seedlings) and S2 genotype (p ≤ 0.05). Transcript accumulation of trehalose 6 phosphate synthase (T6PS) and NADPH: isoflavone oxide reductase (IFR) genes in T1 did not record significant differences with the control or S2 genotype. These results suggested that, faster activation of studied genes in T1 genotype and higher accumulation of transcripts, especially LEA and H1, could be possible reasons for its higher tolerance under salinity stress.
引用
收藏
相关论文
共 50 条
  • [1] Physiological and gene expression analysis of extreme chickpea (Cicer arietinum L.) genotypes in response to salinity stress
    Arefian, Mohammad
    Shafaroudi, Saeid Malekzadeh
    ACTA PHYSIOLOGIAE PLANTARUM, 2015, 37 (09)
  • [2] Response of some chickpea (Cicer arietinum L.) genotypes to salt stress conditions
    Karakoy, Tolga
    Kokten, Kagan
    Toklu, Faruk
    JOURNAL OF FOOD AGRICULTURE & ENVIRONMENT, 2012, 10 (3-4): : 337 - 341
  • [3] Mycorrhiza in Improving Morpho-Physiological and Biochemical Parameters of Chickpea Genotypes (Cicer arietinum L.) Under Salinity Stress
    Pooja Pooja
    Sridevi Tallapragada
    Minakshi Yadav
    R. K. Chugh
    Sakshi Saini
    Sarita Devi
    Journal of Crop Health, 2024, 76 (2) : 533 - 547
  • [4] Evaluation of chickpea (Cicer arietinum L.) genotypes for heat tolerance: a physiological assessment
    Kumar P.
    Shah D.
    Singh M.P.
    Indian Journal of Plant Physiology, 2017, 22 (2): : 164 - 177
  • [5] Physiological and nutritional responses of chickpea (Cicer arietinum L) to salinity
    Krouma, Abdelmajid
    TURKISH JOURNAL OF AGRICULTURE AND FORESTRY, 2009, 33 (05) : 503 - 512
  • [6] Drought tolerance mechanisms in chickpea (Cicer arietinum L.) investigated by physiological and transcriptomic analysis
    Negussu, Miriam
    Karalija, Erna
    Vergata, Chiara
    Buti, Matteo
    Subasic, Mirel
    Pollastri, Susanna
    Loreto, Francesco
    Martinelli, Federico
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2023, 215
  • [7] Physiological response of chickpea (Cicer arietinum L.) at early seedling stage under salt stress conditions
    Mann, Anita
    Kaur, Gurpreet
    Kumar, Ashwani
    Sanwal, Satish Kumar
    Singh, Jogendra
    Sharma, P. C.
    LEGUME RESEARCH, 2019, 42 (05) : 625 - 632
  • [8] BIOCHEMICAL CHANGES IN RESPONSE TO SALINITY IN CHICKPEA (CICER ARIETINUM L.) DURING EARLY STAGES OF SEEDLING GROWTH
    Arefian, M.
    Vessal, S.
    Bagheri, A.
    JOURNAL OF ANIMAL AND PLANT SCIENCES, 2014, 24 (06) : 1849 - 1857
  • [9] Genome-wide analysis of Glutathione peroxidase (GPX) gene family in Chickpea (Cicer arietinum L.) under salinity stress
    Parveen, Kauser
    Saddique, Muhammad Abu Bakar
    Ali, Zulfiqar
    Rehman, Shoaib Ur
    Zaib-Un-Nisa
    Khan, Zulqurnain
    Waqas, Muhammad
    Munir, Muhammad Zeeshan
    Hussain, Niaz
    Muneer, Muhammad Atif
    GENE, 2024, 898
  • [10] Validation of internal control genes for quantitative gene expression studies in chickpea (Cicer arietinum L.)
    Garg, Rohini
    Sahoo, Annapurna
    Tyagi, Akhilesh K.
    Jain, Mukesh
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2010, 396 (02) : 283 - 288