Conditions for the Existence of Local Solutions of Set-Valued Differential Equations with Generalized Derivative

被引:0
作者
A. V. Plotnikov
N. V. Skripnik
机构
[1] Mechnikov Odessa State National University,Odessa State Academy of Building and Architecture
[2] Mechnikov Odessa National University,undefined
来源
Ukrainian Mathematical Journal | 2014年 / 65卷
关键词
Differential Inclusion; Generalize Derivative; Integrodifferential Equation; Extended Sense; Fuzzy Differential Equation;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a generalized set-valued differential equation with generalized derivative and prove the theorems on existence and uniqueness of its solution for the cases of interval-valued and set-valued mappings.
引用
收藏
页码:1498 / 1513
页数:15
相关论文
共 29 条
[1]  
Bridgland TF(1970)Trajectory integrals of set-valued functions Pacif. J. Math. 33 43-68
[2]  
Tyurin YN(1965)Mathematical formulation of a simplified model of production planning Ékonom Mat. Met. 1 391-409
[3]  
Plotnikov AV(2011)Set-valued differential equations with generalized derivative J. Adv. Res. Pure Math. 3 144-160
[4]  
Skripnik NV(1969)Equazioni differentiali con soluzioni a valore compatto convesso Boll. Unione Mat. Ital. 2 491-501
[5]  
de Blasi FS(2011)Generalized derivative and Inf. Sci. 181 2177-2188
[6]  
Iervolino F(1971)-derivative for set-valued functions J. Different. Equat. 3 152-172
[7]  
Chalco-Cano Y(1974)Asymptotic behavior for differential equations which cannot be locally linearized Boll. Unione Mat. Ital. 4 701-712
[8]  
Romin-Flores H(2009)On differentiability of multi-valued maps Nonlin. Anal., Theory, Methods, Appl., Ser. A 71 1311-1328
[9]  
Jiminez-Gamero MD(1971)Generalized Hukuhara differentiability of interval-valued functions and interval differential equations Boll. Unione Mat. Ital. 4 941-949
[10]  
Lasota A(2011)Euler method for differential equations with set-valued solutions Appl. Math. 1 99-105